满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM...

如图,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分线,CE⊥AN,垂足是E,连接DE交AC于F.
①求证:四边形ADCE为矩形;
②求证:DF∥AB,DF=manfen5.com 满分网
③当△ABC满足什么条件时,四边形ADCE为正方形,简述你的理由.

manfen5.com 满分网
(1)先根据AB=AC,AD⊥BC垂足是D,得AD平分∠BAC,然后根据AE是△ABC的外角平分线,可求出AN∥BC,故∠DAE=∠ADC=∠AEC=90°,所以四边形ADCE为矩形; (2)根据四边形ADCE是矩形,可知F是AC的中点,由AB=AC,AD平分∠BAC可知D是BC的中点,故DF是△ABC的中位线,即DF∥AB,DF=; (3)根据矩形的性质可知当△ABC是等腰直角三角形时,则∠5=∠2=45°,利用等腰三角形的性质定理可知对应边AD=CD.再运用临边相等的矩形是正方形.问题得证. 证明:(1)∵AB=AC,AD⊥BC垂足是D, ∴AD平分∠BAC,∠B=∠5, ∴∠1=∠2, ∵AE是△ABC的外角平分线, ∴∠3=∠4, ∵∠1+∠2+∠3+∠4=180°, ∴∠2+∠3=90°, 即∠DAE=90°, 又∵AD⊥BC, ∴∠ADC=90°, 又∵CE⊥AE, ∴∠AEC=90°, ∴四边形ADCE是矩形. (2)∵四边形ADCE是矩形, ∴AF=CF=AC, ∵AB=AC,AD平分∠BAC, ∴BD=CD=BC, ∴DF是△ABC的中位线, 即DF∥AB,DF=. (3)当△ABC是等腰直角三角形时,四边形ADCE为正方形. ∵在Rt△ABC中,AD平分∠BAC ∴∠5=∠2=∠3=45°, ∴AD=CD, 又∵四边形ADCE是矩形, ∴矩形ADCE为正方形.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示)
(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为______ 公顷,比2000年底增加了______ 公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是______年;
(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率?
查看答案
某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价的25%.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?
(每件商品的利润=售价-进货价)
查看答案
已知:如图,AB是⊙O的直径,C是⊙O上一点,AD和⊙O在点C的切线相垂直,垂足为D,延长AD和BC的延长线交于点E.
求证:AB=AE.

manfen5.com 满分网 查看答案
如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.
求证:四边形AEFG是菱形.

manfen5.com 满分网 查看答案
解下列一元二次方程.
(1)2x2+5x=3
(2)(x-2)(2x-1)=1-2x.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.