如图点O是等边
内一点,
,∠ACD=∠BCO,OC=CD,

(1)试说明:
是等边三角形;
(2)当
时,试判断
的形状,并说明理由;
(3)当
为多少度时,
是等腰三角形
某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围.
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求
的值.

如图,在中,![]()
,是![]()
的外接圆,点P在直径BD的延长线上,且![]()
.![]()
求证:PA是![]()
的切线;![]()
若![]()
,求图中阴影部分的面积结果保留![]()
和根号![]()
![]()

荆车中学决定在本校学生中,开展足球、篮球、羽毛球、乒乓球四种活动.为了了解学生对这四种活动的喜爱情况,学校随机调查了该校
名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.

(1)
_____________,
_______________;
(2)请补全上图中的条形图;
(3)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱足球;
(4)在抽查的
名学生中,喜爱打乒乓球的有10名同学(其中有4名女生,包括小红、小梅).现将喜爱打乒乓球的同学平均分成两组进行训练,只女生每组分两人.求小红、小梅能分在同一组的概率.
已知关于x的方程
.
(1)求证:不论a取何实数,该方程都有两个不相等的实数根.
(2)当a=1时,求该方程的根.
