满分5 > 高中数学试题 >

已知函数f(x)=x2,g(x)=x-1. (1)若∃x∈R使f(x)<b•g(...

已知函数f(x)=x2,g(x)=x-1.
(1)若∃x∈R使f(x)<b•g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.
(1)把∃x∈R使f(x)<b•g(x),转化为∃x∈R,x2-bx+b<0,再利用二次函数的性质得△=(-b)2-4b>0,解出实数b的取值范围; (2)先求得F(x)=x2-mx+1-m2,再对其对应方程的判别式分△≤0和当△>0两种情况,分别找到满足|F(x)|在[0,1]上单调递增的实数m的取值范围,最后综合即可. 【解析】 (1)由∃x∈R,f(x)<b•g(x),得∃x∈R,x2-bx+b<0, ∴△=(-b)2-4b>0,解得b<0或b>4, ∴实数b的取值范围是(-∞,0)∪(4,+∞); (2)由题设得F(x)=x2-mx+1-m2, 对称轴方程为,△=m2-4(1-m2)=5m2-4, 由于|F(x)|在[0,1]上单调递增,则有:  ①当△≤0即时,有,解得,  ②当△>0即或时,设方程F(x)=0的根为x1,x2(x1<x2), 若,则,有解得m≥2; 若,即,有x1<0,x2≤0;得F(0)=1-m2≥0,有-1≤m≤1, ∴; 综上所述,实数m的取值范围是[-1,0]∪[2,+∞).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网
(1)证明:f(x)在R上单调增;
(2)判断f(x)与f(-x)的关系,若对任意的t∈[1,3],不等式f(t2-2kt)+f(2t2-k)>0恒成立,求k的取值范围.
查看答案
经过调查发现,某种新产品在投放市场的100天中,前40天,其价格直线上升,(价格是一次函数),而后60天,其价格则呈直线下降趋势,现抽取其中4天的价格如下表所示:
时间第4天第32天第60天第90天
价格/千元2330227
(1)写出价格f(x)关于时间x的函数表达式(x表示投入市场的第x天);
(2)若销售量g(x)与时间x的函数关系是g(x)=-manfen5.com 满分网x+manfen5.com 满分网(1≤x≤100,x∈N),求日销售额的最大值,并求第几天销售额最高?
查看答案
已知幂函数manfen5.com 满分网为偶函数,且在区间(0,+∞)上是单调递减函数.
(1)求函数f(x)的解析式;
(2)讨论manfen5.com 满分网的奇偶性.
查看答案
已知函数f(x)=logmanfen5.com 满分网
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.
查看答案
设集合A={x|-5≤x≤3},B={x|x<-2或x>4}.
(1)求A∩B;
(2)求A∩(∁RB).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.