满分5 > 高中数学试题 >

已知函数f(x)满足f(logax)=(x-x-1),其中a>0,a≠1 (1)...

已知函数f(x)满足f(logax)=manfen5.com 满分网(x-x-1),其中a>0,a≠1
(1)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的集合;
(2)当x∈(-∞,2)时,f(x-4)的值恒为负数,求a的取值范围.
(1)首先根据题意,用换元法求出f(x)的解析式,进而分析函数的单调性和奇偶性,将已知不等式转化为f(1-m)<f(m2-1),进而转化为,解可得答案; (2)由(1)中的单调性可将f(x-4)的值恒为负数转化为f(2)-4≤0,解不等式即可. 【解析】 (1)根据题意,令logax=t,则x=at, 所以,即 当a>1时,因为ax-a-x为增函数,且>0,所以f(x)在(-1,1)上为增函数; 当0<a<1时,因为ax-a-x为减函数,且<0,所以f(x)在(-1,1)上为增函数; 综上所述,f(x)在(-1,1)上为增函数. 又因为f(-x)==-f(x),故f(x)为奇函数. 所以f(1-m)+f(1-m2)<0⇔f(1-m)<-f(1-m2)⇔f(1-m)<f(m2-1) 由f(x)在(-1,1)上为增函数,可得 解得1<m<,即m的值的集合为{m|1<m<} (2)由(1)可知,f(x)为增函数, 则要使x∈(-∞,2),f(x)-4的值恒为负数, 只要f(2)-4<0即可,即f(2)==<4,又a>0 解得 又a≠1,可得符合条件的a的取值范围是(2-,1)∪(1,2+).
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右顶点分别为A,B,离心率为manfen5.com 满分网,右准线为l:x=4.M为椭圆上不同于A,B的一点,直线AM与直线l交于点P.
(1)求椭圆C的方程;
(2)若manfen5.com 满分网,判断点B是否在以PM为直径的圆上,并说明理由;
(3)连接PB并延长交椭圆C于点N,若直线MN垂直于x轴,求点M的坐标.

manfen5.com 满分网 查看答案
海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:
①失事船的移动路径可视为抛物线manfen5.com 满分网
②定位后救援船即刻沿直线匀速前往救援;
③救援船出发t小时后,失事船所在位置的横坐标为7t
(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.
(2)问救援船的时速至少是多少海里才能追上失事船?

manfen5.com 满分网 查看答案
已知函数f(x)=a•2x+b•3x,其中常数a,b 满足a•b≠0
(1)若a•b>0,判断函数f(x) 的单调性;
(2)若a•b<0,求f(x+1)>f(x) 时的x 的取值范围.
查看答案
已知集合manfen5.com 满分网
(1)求集合A;
(2)若A∩B=∅,求实数a的取值范围.
查看答案
设函数f(x)=manfen5.com 满分网的最大值为M,最小值为m,则M+m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.