满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA...

如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(Ⅰ)求证:PB⊥DM;
(Ⅱ)求CD与平面ADMN所成的角的正弦值.

manfen5.com 满分网
(Ⅰ)解法1 先由AD⊥PA.AD⊥AB,证出AD⊥平面PAB得出AD⊥PB.又N是PB的中点,PA=AB,得出AN⊥PB.证出PB⊥平面ADMN后,即可证出PB⊥DM.  解法2:如图,以A为坐标原点建立空间直角坐标系A-xyz,设BC=1,通过证明证出PB⊥DM   (Ⅱ)解法1:取AD中点Q,连接BQ和NQ,则BQ∥DC,又PB⊥平面ADMN,所以CD与平面ADMN所成的角为∠BQN.在Rt△BQN中求解即可.  解法2,通过 PB⊥平面ADMN,可知 是平面ADMN 的一个法向量,的余角即是CD与平面ADMN所成的角. (本题满分13分) 【解析】 (Ⅰ)解法1:∵N是PB的中点,PA=AB,∴AN⊥PB. ∵PA⊥平面ABCD,所以AD⊥PA. 又AD⊥AB,PA∩AB=A,∴AD⊥平面PAB,AD⊥PB. 又AD∩AN=A,∴PB⊥平面ADMN. ∵DM⊂平面ADMN,∴PB⊥DM.                   …(6分) 解法2:如图,以A为坐标原点建立空间直角坐标系A-xyz,设BC=1, 可得,A(0,0,0),P(0,0,2),B(2,0,0),C(2,1,0),,D(0,2,0). 因为 ,所以PB⊥DM.  …(6分) (Ⅱ)解法1:取AD中点Q,连接BQ和NQ,则BQ∥DC,又PB⊥平面ADMN,∴CD与平面ADMN所成的角为∠BQN. 设BC=1,在Rt△BQN中,则,,故. 所以CD与平面ADMN所成的角的正弦值为.          …(13分) 解法2:因为. 所以 PB⊥AD,又PB⊥DM,所以PB⊥平面ADMN, 因此的余角即是CD与平面ADMN所成的角. 因为 . 所以CD与平面ADMN所成的角的正弦值为.         …(13分)
复制答案
考点分析:
相关试题推荐
已知直线l:y=k (x+2manfen5.com 满分网)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.
(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;
(Ⅱ)求S的最大值,并求取得最大值时k的值.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期以及单调递增区间;
(2)求函数f(x)在区间manfen5.com 满分网上的最大值和最小值,并求出相应的x的值.
查看答案
已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于    查看答案
已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,则f(2)=    查看答案
若α是锐角,且manfen5.com 满分网,则cosα的值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.