满分5 > 高中数学试题 >

晚会上,主持人面前放着A、B两个箱子,每箱均装有3个完全相同的球,各箱的3个球分...

晚会上,主持人面前放着A、B两个箱子,每箱均装有3个完全相同的球,各箱的3个球分别标有号码1,2,3.现主持人从A、B两箱中各摸出一球.
(1)若用(x,y)分别表示从A、B两箱中摸出的球的号码,请写出数对(x,y)的所有情形,并回答一共有多少种;
(2)求所摸出的两球号码之和为5的概率;
(3)请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性最大?说明理由.
(1)数对(x,y)的所有情形为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种; (2)记“所摸出的两球号码之和为5”为事件A,则事件A包含的基本情形有(2,3),(3,2),共2种,即可得出答案; (3)讨论摸出两球的号码之和,然后分别求出其概率,比较后即可得出答案; 【解析】 (1)数对(x,y)的所有情形为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种. (2)记“所摸出的两球号码之和为5”为事件A,则事件A包含的基本情形有(2,3),(3,2),共2种,所以P(A)=. (3)记“所摸出的两球号码之和为i”为事件Ai(i=2,3,4,5,6), 由(1)可知事件A2的基本结果为1种,事件A3的基本结果为2种,事件A4的基本结果为3种,事件A5的基本结果为2种,事件A6的基本结果为1种,所以P(A2)=,P(A3)=,P(A4)=,P(A5)=,P(A6)=. 故所摸出的两球号码之和为4的概率最大,即猜4获奖的可能性最大.
复制答案
考点分析:
相关试题推荐
甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是    (写出所有正确结论的编号).
manfen5.com 满分网
manfen5.com 满分网
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关. 查看答案
用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是    (用数字作答). 查看答案
已知a,b为异面直线,且a,b所成角为40°,直线c与a,b均异面,且所成角均为θ,若这样的c共有四条,则θ的范围为    查看答案
manfen5.com 满分网,其中a,a1,…a5为实数,则a3=    查看答案
一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.