如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°E为PA中点.
(1)求证:DE∥平面PBC;
(2)求证:平面PAD⊥平面PDB.
考点分析:
相关试题推荐
设命题p:函数
是R上的减函数,命题q:函数f(x)=x
2-4x+3在[0,a]的值域为[-1,3].若“p且q”为假命题,“p或q”为真命题,求a的取值范围.
查看答案
在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
.
其中正确命题的序号是
.
查看答案
已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且
,则C的离心率为
.
查看答案
已知P为双曲线
上一点,F
1,F
2为该双曲线的左、右焦点,若
,则△F
1PF
2的面积为
.
查看答案
以双曲线
的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是
.
查看答案