满分5 > 高中数学试题 >

已知函数f(x)=lnx. (1)求函数g(x)=f(x+1)-x的最大值; (...

已知函数f(x)=lnx.
(1)求函数g(x)=f(x+1)-x的最大值;
(2)若对任意x>0,不等式f(x)≤ax≤x2+1恒成立,求实数a的取值范围;
(3)若x1>x2>0,求证:manfen5.com 满分网manfen5.com 满分网
(1)先求出g(x)=ln(x-1)-x(x>-1),然后求导确定单调区间,极值,最值即可求. (2)本小题转化为在x>0上恒成立,进一步转化为,然后构造函数h(x)=,利用导数研究出h(x)的最大值,再利用基础不等式可知,从而可知a的取值范围. (3)本小题等价于.令t=,设u(t)=lnt-,t>1,由导数性质求出u(t)>u(1)=0,由此能够证明>. 【解析】 (1)∵f(x)=lnx, ∴g(x)=f(x+1)-x=ln(x+1)-x,x>-1, ∴. 当x∈(-1,0)时,g′(x)>0,∴g(x)在(-1,0)上单调递增; 当x∈(0,+∞)时,g′(x)<0,则g(x)在(0,+∞)上单调递减, ∴g(x)在x=0处取得最大值g(0)=0. (2)∵对任意x>0,不等式f(x)≤ax≤x2+1恒成立, ∴在x>0上恒成立, 进一步转化为, 设h(x)=,则, 当x∈(1,e)时,h′(x)>0;当x∈(e,+∞)时,h′(x)<0, ∴h(x). 要使f(x)≤ax恒成立,必须a. 另一方面,当x>0时,x+, 要使ax≤x2+1恒成立,必须a≤2, ∴满足条件的a的取值范围是[,2]. (3)当x1>x2>0时,>等价于. 令t=,设u(t)=lnt-,t>1 则>0, ∴u(t)在(1,+∞)上单调递增, ∴u(t)>u(1)=0, ∴>.
复制答案
考点分析:
相关试题推荐
如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:BC∥面AMP;
(2)求证:平面MAP⊥平面SAC;
(3)求锐二面角M-AB-C的大小的余弦值.

manfen5.com 满分网 查看答案
已知数列{an}的前n项和Sn=-manfen5.com 满分网n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列manfen5.com 满分网的前n项和Tn
查看答案
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为s4,求s4的分布列及期望.
查看答案
设函数manfen5.com 满分网
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,manfen5.com 满分网,求b,c的长.
查看答案
若函数y=f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=manfen5.com 满分网,则函数h(x)=f(x)-g(x)在区间[-5,6]内的零点有    个. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.