满分5 > 高中数学试题 >

已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上. (...

已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值.
(1)设出圆的标准方程,利用圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上,建立方程组,即可求圆M的方程; (2)四边形PAMB的面积为S=2,因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,利用点到直线的距离公式,即可求得结论. 【解析】 (1)设圆M的方程为:(x-a)2+(y-b)2=r2(r>0), 根据题意得,解得:a=b=1,r=2, 故所求圆M的方程为:(x-1)2+(y-1)2=4; (2)由题知,四边形PAMB的面积为S=S△PAM+S△PBM=(|AM||PA|+|BM||PB|). 又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|, 而|PA|2=|PM|2-|AM|2=|PM|2-4, 即S=2. 因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, 所以|PM|min==3,所以四边形PAMB面积的最小值为2=2.
复制答案
考点分析:
相关试题推荐
已知两点A(2,3)、B(4,1),直线l:x+2y-2=0,在直线l上求一点P.
(1)使|PA|+|PB|最小;
(2)使|PA|-|PB|最大.
查看答案
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
查看答案
已知椭圆manfen5.com 满分网的两焦点为F1,F2,点P(x,y)满足manfen5.com 满分网,则|PF1|+PF2|的取值范围为    ,直线manfen5.com 满分网与椭圆C的公共点个数    查看答案
若实数x,y满足manfen5.com 满分网,则manfen5.com 满分网的最小值为    查看答案
过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.