满分5 > 高中数学试题 >

已知:圆x2+y2=1过椭圆的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m...

已知:圆x2+y2=1过椭圆manfen5.com 满分网的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆manfen5.com 满分网相交于A,B两点记manfen5.com 满分网
(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.
(Ⅰ)欲求椭圆的方程,只需求出a,b的值,因为圆x2+y2=1过椭圆的两焦点,可求出a,因为圆x2+y2=1与椭圆有且仅有两个公共点,可求出b,椭圆的方程可知. (Ⅱ)因为直线y=kx+m与圆x2+y2=1相切,可把m用k表示,再让直线方程与椭圆方程联立,把λ用k表示,根据λ的范围,就可求出k的范围. (Ⅲ)因为△OAB的面积S=|AB|•d,把|AB|用k表示,d=1,这样,S就可用含k的式子表示了,再把(2)中求出的k的范围代入,就可得到△OAB的面积S的取值范围. 解;(Ⅰ)由题意知,椭圆的焦距2c=2∴c=1 又∵圆x2+y2=1与椭圆有且仅有两个公共点,∴b=1,∴a= ∴圆的方程为 (Ⅱ)∵直线y=kx+m与圆x2+y2=1相切,∴原点O到直线的距离=1,即m2=k2+1 把直线y=kx+m代入椭圆,可得(1+2k2)x2+4kmx+2m2-2=0 设A(x1,y1),B(x1,y2),则 =x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2 =(1+k2)+m2 ∵,∴,解得,≤k2≤1 ∴k的取值范围是[-1,-]∪[,1]; (Ⅲ)|AB|2=(x1-x2)2+(y1-y2)2=(1+k2)(x1-x2)2 =(1+k2)[-4]=(1+k2)[-] =(1+k2)=2- S△OAB2=|AB|2×1=() ∵≤k2≤1,∴ ∴,∴ 即≤S△OAB2=≤ ∴≤S△OAB≤ ∴△OAB的面积S的取值范围为[,]
复制答案
考点分析:
相关试题推荐
已知椭圆E:manfen5.com 满分网=1(a>b>o)的离心率e=manfen5.com 满分网,且经过点(manfen5.com 满分网,1),O为坐标原点.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

manfen5.com 满分网 查看答案
已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值;
(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为manfen5.com 满分网,求a的值.
查看答案
已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值.
查看答案
已知两点A(2,3)、B(4,1),直线l:x+2y-2=0,在直线l上求一点P.
(1)使|PA|+|PB|最小;
(2)使|PA|-|PB|最大.
查看答案
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.