满分5 > 高中数学试题 >

函数y=f(x),是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,...

函数y=f(x),是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(-x),对于F(x)有如下四个说法:①定义域是[-b,b];②是偶函数;③最小值是0;④在定义域内单调递增;其中正确说法的个数有( )
A.4个
B.3个
C.2个
D.1个
根据题意,依次分析4个命题,对于①,对于F(x)=f2(x)+f2(-x),有a≤x≤b且a≤-x≤b,结合0<b<-a,可得-b≤x≤b,即F(x)的定义域为[-b,b];①正确;对于②,对于F(x),由①的结论可知其定义域关于原点对称,又有F(-x)=f2(-x)+f2(x),故F(x)是偶函数;②正确;对于③,无法判断F(x)在定义域上的最值,故错误;对于④,由②的结论,F(x)是偶函数,则F(x)在定义域内不是单调函数,④错误;综合可得答案. 【解析】 根据题意,依次分析4个命题, ①,对于F(x)=f2(x)+f2(-x),有a≤x≤b且a≤-x≤b,又由0<b<-a,则|b|<|a|,可得-b≤x≤b,故F(x)的定义域为[-b,b];①正确; ②,对于F(x)=f2(x)+f2(-x),由①的结论可知其定义域关于原点对称,又有F(-x)=f2(-x)+f2(x),故F(x)是偶函数;②正确; ③,无法判断F(x)在定义域上的最值,不一定有最小值,最小值也不一定为0;故错误; ④,由②的结论,F(x)是偶函数,关于原点对称的区间上,函数的单调性相反,则F(x)在定义域内不是单调函数,④错误; 即①②两个命题正确, 故选C.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,从双曲线manfen5.com 满分网的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为( )
A.|MO|-|MT|>b-a
B.|MO|-|MT|<b-a
C.|MO|-|MT|=b-a
D.以上三种可能都有
查看答案
在各项均不为零的等差数列{an}中,若an+1-an2+an-1=0(n≥2),则S2n-1-4n=( )
A.-2
B.0
C.1
D.2
查看答案
已知实数x,y满足manfen5.com 满分网,则x+3y的最大值是( )
A.manfen5.com 满分网
B.3
C.4
D.manfen5.com 满分网
查看答案
对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x],则下列命题中正确的是( )
A.函数f(x)的最大值为1
B.方程manfen5.com 满分网有且仅有一个解
C.函数f(x)是周期函数
D.函数f(x)是增函数
查看答案
有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的球的编号互不相同的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.