由题意可知曲线C1:x2+y2-2x=0表示一个圆,曲线C2:y(y-mx-m)=0表示两条直线y=0和y-mx-m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y-mx-m=0要有2个交点,根据直线y-mx-m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.
【解析】
由题意可知曲线C1:x2+y2-2x=0表示一个圆,化为标准方程得:
(x-1)2+y2=1,所以圆心坐标为(1,0),半径r=1;
C2:y(y-mx-m)=0表示两条直线y=0和y-mx-m=0,
由直线y-mx-m=0可知:此直线过定点(-1,0),
在平面直角坐标系中画出图象如图所示:
当直线y-mx-m=0与圆相切时,圆心到直线的距离d==r=1,
化简得:m2=,解得m=±,
则直线y-mx-m=0与圆相交时,m∈(-,0)∪(0,).
故选B