如图所示,平台上的小球从A点水平抛出,恰能无碰撞地进入光滑的BC斜面,经C点进入光滑平面CD时速率不变,最后进入悬挂在O点并与水平面等高的弧形轻质筐内。已知小球质量为1kg,A、B两点高度差2m,BC斜面高4m,倾角,悬挂弧筐的轻绳长为6m,小球看成质点,轻质筐的重量忽略不计,弧形轻质筐的大小远小于悬线长度,重力加速度为g=10m/s2 ,试求:
(1)B点与抛出点A的水平距离x;
(2)小球运动至C点的速度大小;
(3)小球进入轻质筐后瞬间,小球所受拉力F的大小.
)在研究“运动的合成与分解”的实验中,如图甲所示,在一端封闭、长约1 m的玻璃管内注满清水,水中放置一个蜡块,将玻璃管的开口端用胶塞塞紧.然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动,假设从某时刻开始计时,蜡块在玻璃管内每1 s上升的距离都是20 cm,玻璃管向右匀加速平移,每1 s通过的水平位移依次是 5 cm、15 cm、25 cm、35 cm.图乙中,y表示蜡块竖直方向的位移,x表示蜡块随玻璃管运动的水平位移,t=0时蜡块位于坐标原点.
(1)请在图乙中画出蜡块4 s内的运动轨迹.
(2)求出玻璃管向右平移的加速度.
(3)求t=2 s时蜡块的速度v.
如图甲所示,质量为m的物体置于水平地面上,受与水平方向夹角为370的拉力F作用,在2 s时间内的变化图象如图乙所示,其运动的速度图象如图丙所示,g=10 m/s2.求:
(sin370=0.6; cos370=0.8)
(1)0至2s内拉力F所做功
(2)物体和地面之间的动摩擦因数
(3)拉力F的最大功率
⑴若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,且把月球绕地球的运动近似看做是匀速圆周运动。则月球绕地球运动的轨道半径为
⑵若某位宇航员随登月飞船登陆月球后,在月球表面某处以速度v0竖直向上抛出一个小球,经过时间t,小球落回到抛出点。已知月球半径为R月,万有引力常量为G。则月球的密度为
两个星球组成双星,它们在相互之间的引力作用下,绕连线上的某点做周期相同的匀速圆周运动.现测得两星中心距离为L,其运动周期为T,万有引力常量为G,则两星各自的圆周运动半径与其自身的质量成 (填“正比”或者“反比”);两星的总质量为 。
如图(a)所示,滑轮质量、摩擦均不计,质量为2kg的物体在F作用下从静止开始向上做匀加速运动,其速度随时间的变化关系如图(b)所示,由此可知(g取10m/s2)在0至4s这段时间里F做的功的平均功率为 W, 3s末F的瞬时功率大小为 W。