一辆载重卡车,在丘陵地上以不变的速率行驶,地形如图所示。由于轮胎已旧,途中爆了胎.你认为在图中A、B、C、D四处中,爆胎的可能性最大的一处是( )
A.A处 B.B处 C.C处 D.D处
有一种杂技表演叫“飞车走壁”.由杂技演员驾驶摩托车沿圆台形表演台的侧壁做匀速圆周运动.下图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h ,则下列说法中正确的是( )
A.h越高,摩托车对侧壁的压力将越大
B. h越高,摩托车做圆周运动的向心力将越大
C.h越高,摩托车做圆周运动的周期将越大
D.h越高,摩托车做圆周运动的线速度将越大
两个完全相同的小球A、B,在同一高度处,以相同大小的初速度v0分别水平抛出和竖直向上抛出。下列说法正确的是( )
A.两小球落地时的速度相同
B.两小球落地时,重力的瞬时功率相同
C.从开始运动至落地,重力对两小球做功相同
D.从开始运动至落地,重力对两小球做功的平均功率相同
一物体由静止开始自由下落,一小段时间后突然受一恒定水平向右的风力的影响,但着地前一段时间风突然停止,则其运动的轨迹可能是图中的哪一个?( )
关于曲线运动的下列说法中正确的是( )
A.作曲线运动的物体,速度方向时刻改变,一定是变速运动
B.作曲线运动的物体,所受的合外力方向与速度的方向不在同一直线上
C.物体不受力或受到的合外力为零时,可能作曲线运动
D.作曲线运动的物体不可能处于平衡状态
“重力探矿”是常用的探测石油矿藏的方法之一。其原理可简述如下:如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为;石油密度远小于,可将上述球形区域视为空腔。如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏差。重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。已知引力常数为G。
(1)“重力探矿”利用了“割补法”原理:如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,剩余的阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?
(2)设球形空腔体积为V,球心深度为d(远小于地球半径),=x,利用“割补法”原理:如果将近地表的球形空腔填满密度为的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常值可通过填充后的球形区域对Q处物体m产生的附加引力来计算,式中M是填充岩石后球形区域的质量,求空腔所引起的Q点处的重力加速度反常值(在OP方向上的分量)
(3)若在水平地面上半径L的范围内发现:重力加速度反常值在与(k>1)(为常数)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。