如图,一个质量为M的人,站在台秤上,手拿绳子一端,绳子另一端拴一个质量为m的小球,线长为R,让小球在竖直平面内作圆周运动,且摆球恰能通过圆轨道最高点,不计小球所受空气阻力。求小球作圆周运动过程中,台秤示数的变化范围。
近年许多电视台推出户外有奖冲关的游戏节目,如图(俯视图)是某台设计的冲关活动中的一个环节。要求挑战者从平台上跳到以O为转轴的快速旋转的水平转盘上,而不落入水中。已知平台到转盘盘面的竖直高度为1.25m,平台边缘到转盘边缘的水平距离和转盘半径均为2m,转盘以12.5r/min的转速匀速转动。转盘边缘间隔均匀地固定有6个相同障碍桩,障碍桩及桩和桩之间的间隔对应的圆心角均相等。若某挑战者在如图所示时刻从平台边缘以水平速度沿AO方向跳离平台,把人视为质点,不计桩的厚度,g取10 m/s2,则能穿过间隙跳上转盘的最小起跳速度为 ( )
A.4m/s B.5m/s C.6m/s D.7m/s
如图所示,放置在竖直平面内的光滑杆AB,是按照从高度为h处以初速度v0平抛的运动轨迹制成的,A端为抛出点,B端为落地点。现将一小球套于其上,由静止开始从轨道A端滑下。已知重力加速度为g,当小球到达轨道B端时( )
A.小球的速率为
B.小球竖直方向的速度大小为
C.小球在水平方向的速度大小为
D.小球在水平方向的速度大小为
浙江卫视六频道《我老爸最棒》栏目中有一项人体飞镖项目,该运动简化模型如图所示。某次运动中,手握飞镖的小孩用不可伸长的细绳系于天花板下,在A处被其父亲沿垂直细绳方向推出,摆至最低处B时小孩松手,飞镖依靠惯性飞出击中竖直放置的圆形靶最低点D点,圆形靶的最高点C与B在同一高度,C、O、D在一条直径上,A、B、C三处在同一竖直平面内,且BC与圆形靶平面垂直。已知飞镖质量m=1kg,BC距离s=8m,靶的半径R=2m,AB高度差h=0.8m,g取10m/s2。不计空气阻力,小孩和飞镖均可视为质点。
(1)求孩子在A处被推出时初速度vo的大小;
(2)若小孩摆至最低处B点时沿BC方向用力推出飞镖,飞镖刚好能击中靶心,求在B处小孩对飞镖做的功W;
(3)在第(2)小题中,如果飞镖脱手时沿BC方向速度不变,但由于小孩手臂的水平抖动使其获得了一个垂直于BC的水平速度v,要让飞镖能够击中圆形靶,求v的取值范围。
某游乐场过山车模型简化为如图5-3-19所示,光滑的过山车轨道位于竖直平面内,该轨道由一段斜轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R.可视为质点的过山车从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.
(1)若要求过山车能通过圆形轨道最高点,则过山车初始位置相对于圆形轨道底部的高度h至少要多少?
(2)考虑到游客的安全,要求全过程游客受到的支持力不超过自身重力的7倍,过山车初始位置相对于圆形轨道底部的高度h不得超过多少?
图甲为游乐园中“空中飞椅”的游戏设施,它的基本装置是将绳子上端固定在转盘的边缘上,绳子的下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋。若将人和座椅看成一个质点,则可简化为如图乙所示的物理模型,其中P为处于水平面内的转盘,可绕竖直转轴OO'转动,设绳长l=10m,质点的质量m=60kg,转盘静止时质点与转轴之间的距离d=4.0m,转盘逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角θ=37º(不计空气阻力及绳重,且绳不可伸长,sin37º=0.6,cos37º=0.8)求质点与转盘一起做匀速圆周运动时。
(1)绳子拉力的大小;(2)转盘角速度的大小。