由于某种原因,人造地球卫星的轨道半径减小了,那么,卫星的( )
A.速率变小,周期变小 B.速率变小,周期变大
C.速率变大,周期变大 D.速变率大,周期变小
如图所示,一物块在与水平方向成θ角的拉力F的作用下,沿水平面向右运动一段距离s. 则在此过程中,拉力F对物块所做的功为( )
A.Fs B.Fscosθ C.Fssinθ D.Fstanθ
下图为某小型企业的一道工序示意图,图中一楼为原料车间,二楼为生产车间.为了节约能源,技术人员设计了一个滑轮装置用来运送原料和成品,在二楼生产的成品装入A箱,在一楼将原料装入B箱,而后由静止释放A箱,若A箱与成品的总质量为M=20kg,B箱与原料的总质量为m=10kg,这样在A箱下落的同时会将B箱拉到二楼生产车间,当B箱到达二楼平台时可被工人接住,若B箱到达二楼平台时没有被工人接住的话,它可以继续上升h=1m速度才能减小到零.不计绳与滑轮间的摩擦及空气阻力,重力加速度g=10 m/s2,求:
(1)一楼与二楼的高度差H;
(2)在AB箱同时运动的过程中绳对B箱的拉力大小.
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即 k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质量M地.(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)
如图所示,一个人用一根长1 m、只能承受74 N拉力的绳子,拴着一个质量为1 kg的小球,在竖直平面内做圆周运动,已知圆心O离地面h=6 m.转动中小球在最低点时绳子恰好断了.(取g=10 m/s2)
(1)绳子断时小球运动的角速度多大?
(2)绳断后,小球落地点与抛出点间的水平距离是多少?
在做研究平抛运动的实验时,让小球多次沿同一轨道运动,通过描点法画出小球平抛运动的轨迹。
(1)为了能较准确地描绘运动轨迹,下面列出一些操作要求,将你认为正确选项的前面字母填在横线上: 。
(a)通过调节使斜槽的末端保持水平
(b)每次释放小球的位置必须不同
(c)每次必须由静止释放小球
(d)记录小球位置用的木条(或凹槽)每次必须严格地等距离下降
(e)小球运动时不应与木板上的白纸(或方格纸)相接触
(f)将球的位置记录在纸上后,取下纸,用直尺将点连成折线
(2)若用一张印有小方格的纸记录轨迹,小方格的边长为L,小球在平抛运动途中的几个位置如图中的a、b、c、d所示,则小球平抛的初速度的计算式为v0 = (用L、g表示)。