物体A、B的s-t图像如下图所示,由图可知( )
A. 5s内A、B的平均速度相等
B. 从第3s起,两物体运动方向相同,且
C. 在5s内两物体的位移相同,5s末A、B相遇
D. 两物体由同一位置开始运动,但物体A比B迟3s才开始运动
下列说法正确的是
A. 太阳辐射的能量主要来自太阳内部的核裂变反应
B. 黑体辐射的实验规律可用光的波动性解释
C. 一束光照到某金属上,不能发生光电效应,是因为该束光的频率低于极限频率
D. 氢原子从较低能级跃迁到较高能级时,棱外电子的动能增大,势能减小
在“极限”运动会中,有一个在钢索桥上的比赛项目。如图所示,总长为L的均匀粗钢丝绳固定在等高的A、B处,钢丝绳最低点与固定点A、B的高度差为H,动滑轮起点在A处,并可沿钢丝绳滑动,钢丝绳最低点距离水面也为H。若质量为m的人抓住滑轮下方的挂钩由A点静止滑下,最远能到达右侧C点,C、B间钢丝绳相距为L/10,高度差为H/3。参赛者在运动过程中视为质点,滑轮受到的阻力大小可认为不变,且克服阻力所做的功与滑过的路程成正比,不计参赛者在运动中受到的空气阻力、滑轮(含挂钩)的质量和大小,不考虑钢索桥的摆动及形变。重力加速度为g。求:
(1)滑轮受到的阻力大小;
(2)某次比赛规定参赛者须在钢丝绳最低点松开挂钩并落到与钢丝绳最低点水平相距为4a、宽度为a,厚度不计的海绵垫子上。若参赛者由A点静止滑下,会落在海绵垫子左侧的水中。为了能落到海绵垫子上,参赛者在A点抓住挂钩时应具有初动能的范围。
在半径R=5 000 km的某星球表面,宇航员做了如下实验,实验装置如图甲所示。竖直平面内的光滑轨道由斜轨道AB和圆弧轨道BC组成,将质量m=0.2 kg的小球,从轨道AB上高H处的某点静止释放,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出F随H的变化关系如图乙所示,求:
(1)圆轨道的半径;
(2)该星球的第一宇宙速度。
“验证机械能守恒定律”的实验可以采用如图所示的甲或乙方案来进行.
(1)比较这两种方案,___________(选填A.“甲”或B.“乙”)方案好些。
(2)如图是该实验中得到的一条纸带,测得每两个计数点间的距离如图所示,已知每两个计数点之间的时间间隔T=0.1 s,物体运动的加速度a=_________ m/s2;该纸带是_________(选填A.“甲”或B.“乙”)实验方案得到的。
(3)如图是采用甲方案得到的一条纸带,在计算图中N点速度时,几位同学分别用下列不同的方法进行,其中正确的是
A.vN=gnT B.vN=
C.vN=D.vN=g(n-1)T
为了“探究外力做功与物体动能变化的关系”,查资料得知,弹簧的弹性势能Ep=kx2,其中k是弹簧的劲度系数,x是弹簧长度的变化量。
某同学就设想用压缩的弹簧推静止的小球(质量为m)运动来探究这一问题。
为了研究方便,把小铁球O放在水平桌面上做实验,让小球O在弹力作用下运动,即只有弹簧推力做功。
该同学设计实验如下:
首先进行如图甲所示的实验:将轻质弹簧竖直挂起来,在弹簧的另一端挂上小铁球O,静止时测得弹簧的伸长量为d。
在此步骤中,目的是要确定物理量_____,用m、d、g表示为_____。
接着进行如图乙所示的实验:将这根弹簧水平放在桌面上,一端固定,另一端被小铁球压缩,测得压缩量为x,释放弹簧后,小铁球被推出去,从高为h的水平桌面上抛出,小铁球在空中运动的水平距离为L。
小铁球的初动能Ek1=_____。
小铁球的末动能Ek2=_____。
弹簧对小铁球做的功W=_____。(用m、x、d、g表示)
对比W和Ek2-Ek1就可以得出“外力做功与物体动能变化的关系”,即在实验误差允许范围内,外力所做的功等于物体动能的变化。