(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( ) A.(3,7) B.(5,3) C.(7,3) D.(8,2) |
|
(2007•兰州)二次函数y=ax2+bx+c的图象如图所示,则点A(a,b)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
(2006•汉川市)在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴的正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的坐标和它的极坐标存在一一对应关系,如点P的坐标(1,1)的极坐标为P[,45°],则极坐标Q[2,120°]的坐标为( ) A.(-,3) B.(-3,) C.(,3) D.(3,) |
|
(2006•厦门)对于直角坐标平面内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”: ||AB||=|x2-x1|+|y2-y1|.给出下列三个命题: ①若点C在线段AB上,则||AC||+||CB||=||AB||; ②在△ABC中,若∠C=90°,则||AC||2+||CB||2=||AB||2; ③在△ABC中,||AC||+||CB||>||AB||.其中真命题的个数为( ) A.0 B.1 C.2 D.3 |
|
(2006•日照)已知直线y=mx-1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为( ) A. B.或 C.或 D.或 |
|
(2006•厦门)在平面直角坐标系内存在⊙A,A(b,0),⊙A交x轴于O(0,0)、B(2b,0),在y轴上存在一动点C(C不与原点O重合),直线l始终过A、C,直线l交⊙A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则S△DEA的最大值为( ) A. B. C. D.无法判断 |
|
(2006•淄博)在平面直角坐标系中,已知A(,1),O(0,0),C(,0)三点,AE平分∠OAC,交OC于E,则直线AE对应的函数表达式是( ) A.y=x- B.y=x-2 C.y=x-1 D.y=x-2 |
|
(2006•自贡)两圆圆心都在y轴上,且两圆相交于A、B两点,点A的坐标为(2,1),则B点的坐标为( ) A.(-2,1) B.(-2,-1) C.(2,-1) D.(O,1) |
|
(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为( ) A.(0,0) B.(,-) C.(,-) D.(-,) |
|
(2007•雅安)如图,是象棋盘的一部分.若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( )上. A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2) |
|