为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相应的四档高度,得到如下数据; 高度 档次 第一档 第二档 第三档 第四档 凳高x(cm) 37.0 40.0 42.0 45.0 桌高y(cm) 70.0 74.8 78.0 82.8 (1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围); (2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
|
|
某家电集团公司生产某种型号的新家电.前期投资200万元,每生产1台这种新家电,后期还需要其他投资0.3万元,已知每台新家电可实现产值0.5万元. (1)求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式; (2)当新家电的总产量为900台时,该公司的盈亏情况如何? (3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.(注:总投资=前期投资+后期其他投资,总利润=总产值-总投资). 答案:
|
|
某种储蓄的月利率是0.36%,今存入本金100元,求本息和(本金与利息的和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和。
|
|
一个铜球在0℃时的体积是1000cm3,加热后温度增加1℃,体积增加0.051cm3,写出铜球的体积V与t之间的函数关系式,并计算加热到200℃时铜球的体积.
|
|
某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余量为Q1吨,加油飞机的加油油箱剩余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图像如图所示,结合图像回答下列问题: (1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式.
|
|
如图所示,折线ABC是某城市出租车所收车费y(元)与出租车行驶路程x(千米)之间的函数关系的图像.根据图像,求: (1)当x≥3时,y与x之间的函数关系式; (2)某人乘车2km应付车费多少元? (3)若某人付车费10.8元,则出租车行驶了多少千米?
|
|
一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩余的高度h(厘米)与燃烧时间t(时)的函数关系的图象( )
|
|
某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同.设汽车每月行驶xkm,应付给个体车主的月租费用是y1元,应付给出租公司的月租费用是y2元,y1、y2分别与x之间的函数关系图像(两条射线)如图所示,观察图像回答下列问题: (1)每月行驶的路程在什么范围内时,租国有公司的车合算? (2)每月行驶的路程等于多少时,租两家车的费用相同? (3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算?
|
|
张师傅驾车运送货物到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示. 请根据图象回答下列问题: (1)汽车行驶______小时后加油,中途加油______升; (2)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.
|
|
某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时安排工人装箱,若每小时装产品150件,未装箱的产品数量y是时间t的函数,那么这个函数的大致图象只能是( )
|
|