如图,在平面直角坐标系中,点A在x轴上,△ABO是直角三角形,∠ABO=90°,点B的坐标为(-1,2),将△ABO绕原点O顺时针旋转90°得到△A1B1O. (1)在旋转过程中,点B所经过的路径长是多少? (2)分别求出点A1,B1的坐标; (3)连接BB1交A1O于点M,求M的坐标. |
|
如图,ABCD是边长为1的正方形,其中、、的圆心依次是A、B、C. (1)求点D沿三条圆弧运动到点G所经过的路线长; (2)判断直线GB与DF的位置关系,并说明理由. |
|
如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E. (1)求OE的长; (2)求劣弧AC的长.(结果精确到0.1) |
|
如图,已知BC是⊙O的直径,P是⊙O上一点,A是的中点,AD⊥BC于点D,BP与AD相交于点E,若∠ACB=36°,BC=10. (1)求的长; (2)求证:AE=BE. |
|
如图,扇形OBC是圆锥的侧面展开图,圆锥的母线OB=l,底面圆的半径HB=r. (1)当l=2r时,求∠BOC的度数; (2)当l=3r,l=4r时,分别求∠BOC的度数;(直接写出结果) (3)当l=nr(n为大于1的整数)事,猜想∠BOC的度数(直接写出结果). |
|
(1)如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点, 求证:MB=MC. (2)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2). ①画出△OAB向下平移3个单位后的△O1A1B1; ②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π). |
|
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1. (1)在正方形网格中,作出△AB1C1; (2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长. |
|
如图,在正三角形网格中,每一个小三角形都是边长为1的正三角形,解答下列问题: (1)网格中每个小三角形的面积为______; (2)将顶点在格点上的四边形ABOC绕点O顺时针旋转120°两次,画出所得到的两个图形,并写出点A所经过的路线为______.(结果保留π). |
|
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点) (1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长. |
|
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上). (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1; (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2; (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长. |
|