如图,有两个可以自由转动的均匀转盘,转盘A被分成面积相等的三个扇形,转盘B被分成面积相等的四个扇形,每个扇形内都涂有颜色.同时转动两个转盘,停止转动后,若一个转盘的指针指向红色,另一个转盘的指针指向蓝色,则配成紫色;若其中一个指针指向分界线时,需重新转动两个转盘. (1)用列表或画树状图的方法,求同时转动一次转盘A、B配成紫色的概率; (2)小强和小丽要用这两个转盘做游戏,他们想出如下两种游戏规则: ①转动两个转盘,停止后配成紫色,小强获胜;否则小丽获胜; ②转动两个转盘,停止后指针都指向红色,小强获胜;指针都指向蓝色,小丽获胜. 判断以上两种规则的公平性,并说明理由. |
|
某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入. (1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明; (2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规完:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平. (3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心? |
|
某中学九年级共有6个班,要从中选出两个班代表学校参加一项重大活动,九(1)班是先进班,学校指定该班必须参加,另外再从九(2)班到九(6)班中选出一个班,九(4)班有同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就派几班参加. (1)请用列表或画树形图的方法列举出摸出的两球编号的所有可能出现的结果; (2)如果采用这一建议选班,对五个班是一样公平的吗?请说明理由. |
|
如图,一个可以自由转动的均匀转盘被分成了4等份,每份内均标有数字,小明和小亮商定了一个游戏,规则如下: (1)连续转动转盘两次; (2)将两次转盘停止后指针所指区域内的数字相加(当指针恰好停在分格线上时视为无效,重转); (3)若数字之和为奇数,则小明赢;若数字之和为偶数,则小亮赢. 请用“列表”或“画树状图”的方法分析一下,这个游戏对双方公平吗?并说明理由. |
|
(1)化简求值:•,其中x= (2)计算:-22++(-2007)-4sin45° (3)甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1,2,3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1,2,3,4,5,6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜. ①请你用画树状图或列表法把两人所得的数字之和的所有结果都列举出来; ②这个游戏公平吗?如果公平,请说明理由;如果不公平,请你加以改进,使游戏变得公平. |
|
小明和小丽做如下游戏:任意掷出两枚均匀且完全相同的硬币,若朝上的面相同,则小明获胜;若朝上的面不同,则小丽获胜.小丽认为:朝上的面相同有“两个正面”和“两个反面”两种情况;而朝上的面不同只有“一正一反”一种情况,因此游戏对双方不公平.你认为呢?请利用树状图(或列表)的方法表示游戏所有可能出现的结果,并求出两人获胜的概率,然后再作出判断. |
|
小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张. 小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜. (1)请用树状图表示出两人抽牌可能出现的所有结果; (2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由. |
|
小敏和小李都想去看在我市举行的省乒乓球比赛,但俩人只有一张门票,小敏建议通过摸球来决定谁去观赏,他的方法是:把1个白球和2个红球放在一只不透明的袋子中(这些球除颜色外都相同),搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球,如果两次都摸出相同颜色的球,则小敏自己去看比赛,否则小李去看比赛.问小敏的这个方法对双方公平吗?请说明理由. |
|
小昆和小明玩摸牌和转转盘游戏,游戏规则如下:先摸牌,有两张背面完全相同、牌面数字是2和6的扑克牌,背面朝上洗匀后从中抽出一张,抽得的牌面数字即为得分:后转动一个转盘.转盘被分4个相等的扇形,并标上1,2、3、4,转盘停止后,指针所在区域的数字即为得分(若指针在分格线上,则重转一次,直到指针指向某一区域为止). (1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果; (2)若两次得分之和为总分,写出所有的总分.小昆和小明约定:总分是3的倍数,则小昆获胜;总分不是3的倍数,则小明获胜,这个游戏公平吗?为什么? |
|
甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1、2、3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1、2、3、4、5、6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜. (1)请你用列表法或画树状图把两人所得的数字之和的所有结果都列举出来; (2)这个游戏公平吗?请说明理由;如果不公平,请你加以改进,使游戏变得公平. |
|