某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐: (1)求甲、乙、丙三名学生在同一个餐厅用餐的概率; (2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率. |
|
如图,有两个可以自由转动的均匀转盘A,B,转盘A被均匀地分成4等份,每份分别标上1,2,3,4四个数字;转盘B被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字. (1)填空:转动转盘A,转盘停止后,指针指向数字为偶数的概率为______; (2)同时转动A,B两个转盘,转盘停止后,指针各指向一个数字,将所指的两个数字作和,用列表法列举所有可能得到的数字之和; (3)分别求(2)中事件“数字之和为奇数”发生的概率与事件“数字之和为偶数”发生的概率. |
|
在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,试求取出两个相同颜色小球的概率(要求用树状图个或列表方法求解). |
|
一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明. |
|
如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光. (1)任意闭合其中一个开关,则小灯泡发光的概率等于______; (2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率. |
|
在电视台举行的“超级女生”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论. (1)写出三位评委给出A选手的所有可能的结论; (2)对于选手A,只有甲、乙两位评委给出相同结论的概率是多少? |
|
“石头、剪刀、布”是广为流传的游戏.游戏时甲、乙双方每次出“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”,同种手势不分胜负.假定甲、乙两人每次都是等可能地出这三种手势,用画树状图或列表的方法分别求出一次游戏中两人出同种手势的概率和甲获胜的概率.(提示:为书写方便,解答时可以用S表示“石头”,用J表示“剪刀”,用B表示“布”) |
|
三人相互传球,由甲开始发球,并作为第一次传球. (1)用列表或画树状图的方法求经过3次传球后,球仍回到甲手中的概率是多少? (2)由(1)进一步探索:经过4次传球后,球仍回到甲手中的不同传球的方法共有多少种? (3)就传球次数n与球分别回到甲、乙、丙手中的可能性大小,提出你的猜想(写出结论即可). |
|
“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次只能做“石头”、“剪刀”、“布”这三种手势中的一种.假定双方每次都是等可能的做这三种手势. 问:小强和小刚在一次游戏时, (1)两个人同时出现“石头”手势的概率是多少? (2)两个人出现不同手势的概率是多少? |
|
A袋中有2个红球和1个白球,B袋中有1个红球和2个白球(这些球除颜色外没有其它区别),甲、乙两人分别从A、B袋中各摸出一个球.游戏规定,两个小球颜色相同时,甲获胜;两个小球颜色不同时,乙获胜. (1)用列表法(或画树状图)求甲获胜的概率; (2)你认为这个游戏公平吗?请简要说明理由. |
|