小刚和小明玩“石头”、“剪子”、“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局. (1)玩一次小刚出“石头”的概率是多少? (2)玩一次小刚胜小明的概率是多少,用列表法或画树状图法加以说明. |
|
如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘). (1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果; (2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率. |
|
四张质地相同并标有数学0、1、2、3的卡片(如图所示),将卡片洗匀后,背面朝上放在桌面上,第一次任意抽取一张(不放回),第二次再抽一张.用列表法或树状图求两次所抽卡片上的数字恰到好处好是方程x2-5x+6=0两根的概率. |
|
从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意选了一条从甲地到丁地的路线,求他恰好选到B2路线的概率是多少? |
|
已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球. (1)从口袋中随机取出一个球(不放回),接着再取出一个球,请用树形图或列表的方法求取出的两个都是黄色球的概率; (2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多1,且从口袋中取出一个黄色球的概率为,请问小明又放入该口袋中红色球和黄色球各多少个? |
|
如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置﹙指针指向两个扇形的交线时,重新转动转盘﹚,相应地得到一个数. ﹙1﹚求事件“转动一次,得到的数恰好是0”发生的概率; ﹙2﹚用树状图或表格,求事件“转动两次,第一次得到的数与第二次得到的数,它们的绝对值相等”发生的概率. |
|
在一个不透明的盒子里,装有3个写有字母A、2个写有字母B和1个写有字母C的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下字母后放回盒子,摇匀后再随机取出一个小球,记下字母.请你用画树状图或列表的方法,求摸出的两个小球上分别写有字母B、C的概率. |
|
如图所示,有三种不透明的卡片,除正面写有不同数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次随机抽一张,并把这张卡片标有的数字记作一次函数表达式中的k,放回洗匀后,第二次再随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的b. (1)写出k为负数的概率. (2)求一次函数y=kx+b的图象经过第二,三,四象限的概率(用树状图或列表法求解.) |
|
在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y. (1)用列表法表示出(x,y)的所有可能出现的结果; (2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率; (3)求小明、小华各取一次小球所确定的数x,y满足y<的概率. |
|
如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止. (1)请你通过画树状图的方法求小颖获胜的概率; (2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则. |
|