如图,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的概率是( ) A. B. C. D. |
|
在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段不能构成三角形的概率是( ) A. B. C. D. |
|
一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是( ) A. B. C. D. |
|
某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%.在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中.全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问: (1)最后一个3分球由甲、乙中谁来投,获胜的机会更大? (2)请简要说说你的理由. |
|
某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相同的球(球上分别标有数字1,2,…,100)的箱子中随机摸出一个球(摸后放回).若球上的数字是88,则返500元购物券;若是66或99,则返300元购物券;若球上的数字被5整除,则返5元购物券;若是其它数字不返还购物券.第二种是顾客在商场消费每满200元直接返还15元购物券.估计活动期间将有5000人参加活动.请你通过计算说明商家选择哪种方案促销合算些? |
|
在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成16份),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元. (1)求每转动一次转盘所获购物券金额的平均数; (2)如果你在该商场消费125元,你会选择转转盘还是直接获得购物券?说明理由. |
|
在“六•一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券. 转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由. |
|
下列三种说法: (1)三条任意长的线段都可以组成一个三角形; (2)任意掷一枚均匀的硬币,正面一定朝上; (3)购买一张彩票可能中奖. 其中,正确说法的序号是______. |
|
根据你的经验,分别写出下列事件发生的机会,并用番号A、B、C把这些事件发生的机会在直线上表示出来. A、在一个不透明的袋中装有红球3个,白球2个,黑球1个,每种球除颜色外其余都相同,摇匀后随机地从袋中取出1个球,取到红球的机会是______; B、投掷一枚普通正方体骰子,出现的点数为7的机会是______; C、投掷两枚普通硬币,出现两个正面的机会是______. |
|
不透明的口袋里装有2个红球2个白球(除颜色外其余都相同). 事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球; 事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球. 试比较上述两个事件发生的可能性哪个大?请说明理由. |
|