如图所示转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见【解析】 甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形; 乙:只要指针连续转六次,一定会有一次停在6号扇形; 丙:指针停在奇数号扇形的机会与停在偶数号扇形的机会相等; 丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大. 其中,你认为正确的见解有( ) A.1个 B.2个 C.3个 D.4个 |
|
用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108度.宇宙中一块陨石落在地球上,落在陆地的概率是( ) A.0.3 B.0.4 C.0.5 D.0.2 |
|
一只蚂蚁在如图所示的图案中任意爬行,已知两圆的半径分别为1cm,2cm,则蚂蚁在阴影部分内的概率为( ) A. B. C. D.不确定 |
|
小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( ) A. B.π C.π D. |
|
如图,转盘被平均分成6份,转动转盘,转盘停止转动时指针指向阴影部分的概率是( ) A. B. C. D. |
|
如图所示,一个可以自由转动的均匀的转盘被等分成6个扇形,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( ) A. B. C. D. |
|
如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P(甲)表示小球停在甲中黑色三角形上的概率,P(乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是( ) A.P(甲)>P(乙) B.P(甲)=P(乙) C.P(甲)<P(乙) D.P(甲)与P(乙)的大小关系无法确定 |
|
向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是( ) A. B. C. D. |
|
“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是( )
A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70 B.假如你去转动转盘一次,获得铅笔的概率大约是0.70 C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次 D.转动转盘10次,一定有3次获得文具盒 |
||||||||||||||||||||||
如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( ) A. B. C. D. |
|