两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案: 甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车. 如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能? (2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大,为什么? |
|
图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题: (1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是; (2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词. |
|
下图中,图(1)是一个扇形AOB,将其作如下划分: 第一次划分:如图(2)所示,以OA的一半OA1为半径画弧,再作∠AOB的平分线,得到扇形的总数为6个,分别为:扇形AOB、扇形AOC、扇形COB、扇形A1OB1,扇形A1OC1,扇形C1OB1; 第二次划分:如图(3)所示,在扇形C1OB1中,按上述划分方式继续划分,可以得到扇形的总数为11个; 第三次划分:如图(4)所示;… 依次划分下去. (1)根据题意,完成下表:
|
|||||||||||||||
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1. (1)在图中画出△A1OB1; (2)求经过A,A1,B1三点的抛物线的解析式. |
|
2004年12月28日,我国第一条城际铁路--合宁铁路(合肥至南京)正式开工建设.建成后,合肥至南京的铁路运行里程将由目前的312km缩短至154km,设计时速是现行时速的2.5倍,旅客列车运行时间将因此缩短约3.13h.求合宁铁路的设计时速. |
|
如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明. |
|
下面是数学课堂的一个学习片断.阅读后,请回答下面的问题: 学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”. 同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法…. (1)假如你也在课堂中,你的意见如何为什么? (2)通过上面数学问题的讨论,你有什么感受?(用一句话表示) |
|
解不等式组. |
|
将代数式尽可能化简,并选择一个你喜欢的数式入求值:. |
|
如图,△ABC中∠A=30°,tanB=,AC=,则AB= . |
|