函数y=的自变量x的取值范围是( ) A.x>-3 B.x<-3 C.x≠-3 D.x≥-3 |
|
下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. |
|
计算-a-a的结果是( ) A.0 B.2a C.-2a D.a2 |
|
小明在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为5 640 000,这个数用科学记数法表示为( ) A.5.64×104 B.5.64×105 C.5.64×106 D.5.64×107 |
|
-9的绝对值是( ) A.-9 B.9 C. D. |
|
Rt△ABC中,∠ACB=90°,BC=15,AC=20.CD为斜边AB上的高.矩形EFGH的边EF与CD重合,A、D、B、G在同一直线上(如图1).将矩形EFGH向左边平移,EF交AC于M(M不与A重合,如图2),连接BM,BM交CD于N,连接NF. (1)直接写出图2中所有与△CDB相似的三角形; (2)设CE=x,△MNF的面积为y,求y与x的函数关系式,写出自变量x的取值范围,并求△MNF的最大面积; (3)在平移过程中是否存在四边形MFNC为平行四边形的情形?若存在,求出x的值;若不存在,说明理由. |
|
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0. (1)求抛物线的解析式. (2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动. ①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围. ②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由. |
|
如图,在梯形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAD的平分线AE交BC于E,F,G分别是AB,AD的中点. (1)求证:EF=EG; (2)当AB与EC满足怎样的数量关系时,EG∥CD?并说明理由. |
|
某化妆公司每月付给销售人员的工资有两种方案. 方案一:没有底薪,只拿销售提成; 方案二:底薪加销售提成. 设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售费中提取一定数量的费用): (1)求y1的函数解析式; (2)请问方案二中每月付给销售人员的底薪是多少元? (3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好,至少要销售商品多少件? |
|
随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.己知2006年底全市汽车拥有量为10万辆. (1)求2006年底至2008年底我市汽车拥有量的年平均增长率; (2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同) |
|