若不等式组的解集为0<x<1,则a的值为( ) A.1 B.2 C.3 D.4 |
|
对于函数y=-3x+1,下列结论正确的是( ) A.它的图象必经过点(-1,3) B.它的图象经过第一、二、三象限 C.当x>1时,y<0 D.y的值随x值的增大而增大 |
|
已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是( ) A.2 B.5 C.9 D.10 |
|
若实数a满足a-|a|=2a,则( ) A.a>0 B.a<0 C.a≥0 D.a≤0 |
|
下列运算结果正确的是( ) A. B.a2•a3=a6 C.a2•a3=a5 D.a2+a3=a6 |
|
如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD. (1)求直线AB的解析式; (2)当点P运动到点(,0)时,求此时DP的长及点D的坐标; (3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. |
|
如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点. (1)求抛物线的解析式; (2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标; (3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应). |
|
某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
(2)该厂如何生产能获得最大利润? (3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价-成本) |
||||||||||
如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx-k的图象的交点为A(m,2). (1)求一次函数的解析式; (2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标. |
|
如图所示,在天水至宝鸡(天宝)高速公路建设中需要确定某条隧道AB的长度,已知在离地面2700米高度C处的飞机上,测量人员测得正前方AB两点处的俯角分别是60°和30°,求隧道AB的长.(结果保留根号) |
|