相关试题
当前位置:首页 > 初中数学试题
manfen5.com 满分网某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是( )
A.8.4小时
B.8.6小时
C.8.8小时
D.9小时
manfen5.com 满分网如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若BG=manfen5.com 满分网-1,则△ABC的周长为( )
A.4+2manfen5.com 满分网
B.6
C.2+2manfen5.com 满分网
D.4
若关于x的方程式x2-x+a=0有实数根,则a的值可以是( )
A.2
B.1
C.0.5
D.0.25
manfen5.com 满分网如图是某几何体的三视图,则该几何体的体积是( )
A.π
B.2π
C.3π
D.4π
下列运算正确的是( )
A.a4+a2=a6
B.5a-3a=2
C.2a3•3a2=6a6
D.(-2a)-2=manfen5.com 满分网
|-2|的相反数是( )
A.-2
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.2
manfen5.com 满分网在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.
(1)写出A、C两点的坐标;
(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;
(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.
在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为______
(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.
(3)连接AD,当OC∥AD时,
①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.

manfen5.com 满分网
用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=manfen5.com 满分网a+b-1(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:
manfen5.com 满分网
根据图中提供的信息填表:
 格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积
多边形181 
多边形273 
一般格点多边形abS
则S与a、b之间的关系为S=______(用含a、b的代数式表示).
某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).
(1)列出满足题意的关于x的不等式组,并求出x的取值范围;
(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?
共1196510条记录 当前(81542/119651) 首页 上一页 81537 81538 81539 81540 81541 81542 81543 81544 81545 81546 81547 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.