在用打点计时器验证机械能守恒定律的实验中,使质量为m=1.00kg的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图所示.O为第一个点,A、B、C为从合适位置开始选取连续点中的三个点.已知打点计时器每隔0.02s打一个点,当地的重力加速度为g=9.80m/s2,那么: (1)根据图上所得的数据,应取图中O点到 点来验证机械能守恒定律; (2)从O点到(1)问中所取的点,重物重力势能的减少量△Ep= J,动能增加量△Ek= J(结果取三位有效数字). (3)若测出纸带上所有各点到O点之间的距离,根据纸带算出相关各点的速度υ及物体下落的高度h,则以为纵轴,以h为横轴画出的图线应是图中的 。
|
|
如图甲所示,在倾角为37°的粗糙且足够长的斜面底端,一质量m=2kg可视为质点的滑块压缩一轻弹簧并锁定,滑块与弹簧不相连.t=0s时解除锁定,计算机通过传感器描绘出滑块的速度一时间图象如图乙所示,其中Ob段为曲线,bc段为直线,sin37°=0.6,cos37°=0.8.g取10m/s2,则下列说法正确的是( ) A.在0.15S末滑块的加速度为-8m/s2 B.滑块在0.1~0.2s时间间隔内沿斜面向下运动 C.滑块与斜面间的动摩擦因数μ=0.25 D.在滑块与弹簧脱离之前,滑块一直在做加速运动
|
|
如图所示,劲度系数为k的轻质弹簧,一端系在竖直放置、半径为R的光滑圆环顶点P,另一端连接一套在圆环上且质量为m的小球,开始时小球位于A点,此时弹簧处于原长且与竖直方向的夹角为45°,之后小球由静止沿圆环下滑,小球运动到最低点B时速率为v,此时小球与圆环之间压力恰好为零.下列分析正确的是( ) A.小球过B点时,弹簧的弹力大小为 B.小球过B点时,弹簧的弹力大小为 C.从A到B的过程中,重力势能转化为小球的动能和弹簧的弹性势能 D.从A到B的过程中,重力对小球做的功等于小球克服弹簧弹力做的功
|
|
下列说法正确的是 ( ) A.光电效应揭示了光的粒子性,而康普顿效应从动量方面进一步揭示了光的粒子性 B.卢瑟福通过粒子散射实验,提出了原子的核式结构学说 C.核反应方程中的为质子 D.一个氢原子处在n=4的能级,由较高能级跃迁到较低能级时,最多可以发出3种频率的光
|
|
下列说法中正确的是 ( ) A.布朗运动是指液体或气体中悬浮微粒的无规则运动 B.气体的温度升高,每个气体分子运动的速率都增加 C.分子间距离只要增大,分子间的势能就要增大 D.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低
|
|
A、B两球之间压缩一根轻弹簧,静置于光滑水平桌面上.已知A、B两球质量分别为2m和m.当用板挡住A球而只释放B球时,B球被弹出落于距桌边距离为x的水平地面上,如图所示.问当用同样的程度压缩弹簧,取走A左边的挡板,将A、B同时释放,B球的落地点距离桌边距离为( ) A. B. C. D.
|
|
如图所示,ACB是一光滑的、足够长的、固定在竖直平面内的“∧”形框架,其中CA、CB边与竖直方向的夹角均为θ.P、Q两个轻质小环分别套在CA、CB上,两根细绳的一端分别系在P、Q环上,另一端和一绳套系在一起,结点为O.将质量为m的钩码挂在绳套上,OP、OQ两根细绳拉直后的长度分别用l1、l2表示,若l1:l2=2:3,则两绳受到的拉力之比F1:F2等于( ) A.1:1 B.2:3 C.3:2 D.4:9
|
|
一艘在火星表面进行科学探测的宇宙飞船,在经历了从轨道1→轨道2→轨道3的变轨过程后,顺利返回地球。若轨道1为贴近火星表面的圆周轨道,已知引力常量为G,下列说法正确的是( ) A. 飞船在轨道2上运动时,P点的速度小于Q点的速度 B. 飞船在轨道1上运动的机械能大于轨道3上运动的机械能 C. 测出飞船在轨道1上运动的周期,就可以测出火星的平均密度 D. 飞船在轨道2上运动到P点的加速度大于飞船在轨道1上运动到P点的加速度
|
|
如图所示,在倾角为30°的光滑斜面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是fm.现用平行于斜面的拉力F拉其中一个质量为2m的木块,使四个木块沿斜面以同一加速度向下运动,则拉力F的最大值( ) A. B. C. D.
|
|
传送带与水平面夹角为37°,传送带以12m/s的速率沿顺时针方向转动,如图所示.今在传送带上端A处无初速度地放上一个质量为m的小物块,它与传送带间的动摩擦因数为0.75,若传送带A到B的长度为24m,g取10m/s2,则小物块从A运动到B的时间为( ) A.1.5s B.2.5s C.3.5s D.0.5s
|
|