一辆正沿平直路面行驶的车厢内,一个面向车前进方向站立的人对车厢壁施加水平推力F,在车前进s的过程中,下列说法正确的是 A.当车匀速前进时,人对车做的总功为正功 B.当车加速前进时,人对车做的总功为负功 C.当车减速前进时,人对车做的总功为负功 D.不管车如何运动,人对车做的总功都为零
|
|
自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的重力势能 A.增大 B.变小 C.不变 D.不能确定
|
|
下列物体运动过程中满足机械能守恒的是 A.跳伞运动员张开伞后,在空中匀速下降 B.忽略空气阻力,物体竖直向上抛出的运动 C.火箭升空 D.拉着物体沿光滑斜面匀速上升
|
|
如图所示,物体A、B的质量分别是,,用轻弹簧相连接放在光滑的水平面上,物体B左侧与竖直墙相接触,另有一个质量为物体C以速度向左运动,与物体A相碰,碰后立即与A粘在一起不再分开,然后以v=2.0m/s的共同速度压缩弹簧,试求: ①物块C的初速度为多大? ②在B离开墙壁之后,弹簧的最大弹性势能。
|
|
2015年诺贝尔物理学奖授予一名日本科学家和一名加拿大科学家,以表彰他们发现并证明中微子()振荡现象,揭示了中微子无论多小都具有质量,这是粒子物理学历史性的发现,已知中微子可以将一个氯核转变为一个氩核,其核反应方程式为,上述核反应中B粒子为___________,已知核的质量为36.95685u,核的质量为36.9569u,B粒子的质量为0.00055u,1u质量对应的能量为931.5MeV,根据以上数据,可以判断参与上述反应的中微子的最小能量为___________ MeV(结果保留两位有效数字)
|
|
如图所示,半径为R的扇形AOB为透明柱状介质的横截面,圆心角∠AOB=60°,一束平行于角平分线OM的单色光由OA射入介质,折射光线平行于OB且恰好射向M(不考虑反射光线,已知光在真空中的传播速度为c)。 ①求从AMB面的出射光线与进入介质的入射光线的偏向角; ②光在介质中的传播时间。
|
|
两列简谐横波分别沿x轴正方向和负方向传播,两波源分别位于x=-0.2m和x=1.2m处,传播速度均为,振幅均为A=2cm,图示为t=0时刻两列波的图像(传播方向如图所示),此刻平衡位置处于x=0.2m和x=0.8m的P、Q两质点刚开始振动,质点M的平衡位置处于x=0.5m处,则下列判断正确的是______________ A、质点P、Q的起振方向都沿y轴负方向 B、t=1.5s时刻,质点P、Q都运动到M点 C、t=1.5s时刻之前,质点M始终处于静止状态 D、t=2.5s时M点处于平衡位置向y轴负方向运动 E、M点开始振动后做振幅为4cm,周期为2s的简谐振动
|
|
在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好,轨道和导体棒的电阻均不计,
(1)如图2,若轨道左端接一电动势为E,内阻为r的电源和一阻值未知的电阻,闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度,求此时电源的输出功率; (2)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动,电容器两极板电势差随时间变化的图像如图4所示,已知时刻电容器两极板间的电势差,求导体棒运动过程中受到的水平拉力大小。
|
|
如图所示,QB段为一半径为R=1m的光滑圆弧轨道,AQ段为一长度为L=1m的粗糙水平轨道,两轨道相切于Q点,Q在圆心O的正下方,整个轨道位于同一竖直平面内,物块P的质量为m=1kg(可视为质点),P与AQ之间的动摩擦因数μ=0.1,若物块P以速度从A点滑上水平轨道,到C点后又返回A点时恰好静止,(取)求: (1)的大小; (2)物块P第一次刚通过Q点时对圆弧轨道的压力。
|
|
甲同学设计了如图甲所示的电路来测量电源电动势E以及电阻和的阻值, 实验器材有:待测电阻E(不计内阻) 待测电阻,待测电阻;电压表V(量程1.5V,内阻很大); 电阻箱R(0-99.99Ω);单刀单掷开关;单刀双掷开关,导线若干。 (1)先测量电阻的阻值,请将甲同学的操作补充完整; A、闭合,将切换到a,调节电阻箱,读出其示数和对应的电压表示数 B、保持电阻箱示数不变,______________,读出电压表的示数 C、则电阻的表达式为=_____________________。 (2)甲同学已经测得电阻=4.80Ω,继续测电源电动势E和电阻的阻值,该同学的做法是:闭合,将切换到a,多次调节电阻箱,读出多组电阻箱示数R和应用的电压表示数U,由测得的数据,绘出了如图乙所示的图线,则电源电动势E=_____V,电阻=______Ω(保留三位有效数字)。
|
|