1. 难度:中等 | |
下列计算正确的是 (A) (B) (C) (D)
|
2. 难度:中等 | |
如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于 (A)30° (B)40° (C)60° (D)70°
|
3. 难度:中等 | |
德州市2009年实现生产总值(GDP)1545.35亿元,用科学记数法表示应是(结果保留3个有效数字) (A) 元 (B)元 (C)元 (D)元
|
4. 难度:中等 | |
下面的图形中,既是轴对称图形又是中心对称图形的是
(A) (B) (C) (D)
|
5. 难度:中等 | |
某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h与注水时间t关系的是 (A) (B) (C) (D)
|
6. 难度:中等 | |
为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同), 请根据统计图计算成绩在20~30次的频率是 (A)0.4 (B)0.5 (C)0.6 (D)0.7
|
7. 难度:中等 | |
如图是某几何体的三视图及相关数据,则该几何体的侧面积是 (A) (B) (C) (D)
|
8. 难度:中等 | |
已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是 (A)0,1,2,3 (B)0,1,2,4 (C)0,1,2,3,4 (D)0,1,2,4,5
|
9. 难度:中等 | |
-3的倒数是_________.
|
10. 难度:中等 | |
不等式组的解集为_____________.
|
11. 难度:中等 | |
袋子中装有3个红球和5个白球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是_____________.
|
12. 难度:中等 | |
方程的解为=___________.
|
13. 难度:中等 | |
在四边形中,点E,F,G,H分别是边AB,BC,CD,DA的中点,如果四边形EFGH为菱形,那么四边形ABCD是 (只要写出一种即可).
|
14. 难度:中等 | |
.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m, 若两次日照的光线互相垂直,则树的高度为_____m.
|
15. 难度:中等 | |
电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=6. 如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2009与点P2010之间的距离为_________.
|
16. 难度:中等 | |
粉笔是校园中最常见的必备品. 图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_______ mm.(,结果精确到1 mm)
|
17. 难度:中等 | |
(本题满分6分)
先化简,再求值:,其中.
|
18. 难度:中等 | |
(本题满分8分) 如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O. (1)求证:AB=DC; (2)试判断△OEF的形状,并说明理由.
|
19. 难度:中等 | |||||||||||||||||||
某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
(1)请你计算这两组数据的平均数、中位数; (2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
|
20. 难度:中等 | |
如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F. (1)求证:BC与⊙O相切; (2)当∠BAC=120°时,求∠EFG的度数.
|
21. 难度:中等 | |
为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元. (1)分别求出y1、y2与x之间的函数关系式; (2)若市政府投资140万元,最多能购买多少个太阳能路灯?
|
22. 难度:中等 | |
●探究 (1) 在图1中,已知线段AB,CD,其中点分别为E,F. ①若A (-1,0), B (3,0),则E点坐标为__________; ②若C (-2,2), D (-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b) ,B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程. ●归纳 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d), AB中点为D(x,y) 时,x=_________,y=___________.(不必证明) ●运用 在图3中,一次函数与反比例函数的图象交点为A,B. ①求出交点A,B的坐标; ②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
|
23. 难度:中等 | |
已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3). (1)求此函数的解析式及图象的对称轴; (2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒. ①当t为何值时,四边形ABPQ为等腰梯形; ②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.
|