1. 难度:中等 | |
的相反数是( ). A.3 B.- C.-3 D.
|
2. 难度:中等 | |
如图所示几何体的俯视图是( ).
|
3. 难度:中等 | |
下列运算中,结果正确的是( ). A. B. C. D.
|
4. 难度:中等 | |
下列事件是必然事件的是( ). A.随意掷两个均匀的骰子,朝上面的点数之和为6 B.抛一枚硬币,正面朝上 C.3个人分成两组,一定有2个人分在一组 D.打开电视,正在播放动画片
|
5. 难度:中等 | |
如图, 在⊙O中,∠ACB=34°,则∠AOB的度数是( ). A.17° B.34° C.56° D.68°
|
6. 难度:中等 | |
今年颁布的《国家中长期教育改革和发展规划纲要》中指出,“加大教育投入.提高国家财政性教育经费支出占国内生产总值比例,2012年达到4%.”如果2012年我国国内生产总值为435000亿元,那么2012年国家财政性教育经费支出应为(结果用科学记数法表示)( ). A.4.35×105亿元 B.1.74×105亿元 C.1.74×104亿元 D. 174×102亿元
|
7. 难度:中等 | |
下列四张扑克牌图案,属于中心对称的是( ).
|
8. 难度:中等 | |
反比例函数(x>0)的图象如图所示, 随着x值的增大,y值( ). A.减小 B.增大 C.不变 D.先减小后不变
|
9. 难度:中等 | |
如图,在8×4的方格(每个方格的边长为1个单位长)中, ⊙A的半径为1,⊙B的半径为2,将⊙A由图示位置向右平移1个单位长后,⊙A与静止的⊙B的位置关系是( ). A.内含 B.内切 C.相交 D.外切
|
10. 难度:中等 | |
如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个 直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( ). A.2+ B.2+2 C.12 D.18
|
11. 难度:中等 | |
化简:_____________.
|
12. 难度:中等 | |
分解因式:ax2+2axy+ay2=______________________.
|
13. 难度:中等 | |
如图, 把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是_______°.
|
14. 难度:中等 | |
如图,在△ABC中,
点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为___________.
|
15. 难度:中等 | |||||||||||||||||
下表是中国2010年上海世博会官方网站公布的5月某一周入园参观人数, 则这一周入园参观人数的平均数是__________万.
|
16. 难度:中等 | |
如图,在□ABCD中, AE=EB,AF=2,则FC等于_____.
|
17. 难度:中等 | |
如图, 在直径AB=12的⊙O中,弦CD⊥AB于M,且M是半径OB的中点, 则弦CD的长是_______(结果保留根号).
|
18. 难度:中等 | |
用m根火柴可以拼成如图1所示的x个正方形, 还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得y=_____________.
|
19. 难度:中等 | |
(每小题7分,满分14分) ⑴ 化简:(a+2)(a-2)-a(a+1); ⑵ 解不等式≤1,并把它的解集在数轴上表示出来.
|
20. 难度:中等 | |
本题满分8分)如图, 已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______________,并给予证明.
|
21. 难度:中等 | |
(本题满分8分)某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
⑴ 九年级(1)班参加体育测试的学生有_________人; ⑵ 将条形统计图补充完整; ⑶ 在扇形统计图中,等级B部分所占的百分比是___,等级C对应的圆心角的度数为___°; ⑷ 若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有___人.
|
22. 难度:中等 | |
(本题满分8分)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米, 求:⑴ 装饰画与墙壁的夹角∠CAD的度数(精确到1°); ⑵ 装饰画顶部到墙壁的距离DC(精确到0.01米).
|
23. 难度:中等 | |
(本题满分10分)据宁德网报道:第三届海峡两岸茶业博览会在宁德市的成功举办,提升了闽东茶叶的国内外知名度和市场竞争力,今年第一季茶青(刚采摘下的茶叶)每千克的价格是去年同期价格的10倍.茶农叶亮亮今年种植的茶树受霜冻影响,第一季茶青产量为198.6千克,比去年同期减少了87.4千克,但销售收入却比去年同期增加8500元.求茶农叶亮亮今年第一季茶青的销售收入为多少元?
|
24. 难度:中等 | |
(本题满分12分)如图1,抛物线与x轴交于A、C两点,与y轴交于B点,与直线交于A、D两点。 ⑴直接写出A、C两点坐标和直线AD的解析式; ⑵如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
|
25. 难度:中等 | |
(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. ⑴ 求证:△AMB≌△ENB; ⑵ ①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; ⑶ 当AM+BM+CM的最小值为时,求正方形的边长.
|
26. 难度:中等 | |
(本题满分13分)如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0). ⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______; ⑵若△EFG与梯形ABCD重叠部分面积是y,求 ①当0<x≤2时,y与x之间的函数关系式; ②当2<x≤6时,y与x之间的函数关系式; ⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
|