1. 难度:中等 | |
的倒数是 A. B. C. D.
|
2. 难度:中等 | |
函数的自变量x的取值范围是 A. B. C. D.
|
3. 难度:中等 | |
据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为 A.1.3×104 B.1.3×105 C.1.3×106 D.1.3×107
|
4. 难度:中等 | |
有一组数据:10,30,50,50,70.它们的中位数是 A.30 B.45 C.50 D.70
|
5. 难度:中等 | |
化简的结果是 A. B. C. D.
|
6. 难度:中等 | |
方程组的解是 A. B. C. D.
|
7. 难度:中等 | |
如图,在中,、两点分别在、边上.若,,,则的长度是 A.4 B.5 C.6 D.7
|
8. 难度:中等 | |
下列四个说法中,正确的是 A.一元二次方程有实数根; B.一元二次方程有实数根; C.一元二次方程有实数根; D.一元二次方程有实数根.
|
9. 难度:中等 | |
如图,在菱形中,,,,则的值是 A. B.2 C. D.
|
10. 难度:中等 | |
如图,已知、两点的坐标分别为(2,0)、(0,2),的圆心坐标为(-1,0),半径为1.若是上的一个动点,线段与轴交于点,则面积的最小值是
A.2 B.1 C. D.
|
11. 难度:中等 | |
分解因式= ▲
|
12. 难度:中等 | |
若代数式3x+7的值为-2,则x= ▲
|
13. 难度:中等 | |
)一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是 ▲
|
14. 难度:中等 | |
如图,四边形是正方形,延长到,使,则的度数是 ▲ °.
|
15. 难度:中等 | |
如图,在平行四边形中,是边上的中点.若,,则平行四边形的周长是 ▲ .
|
16. 难度:中等 | |
如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形. 、、分别是小正方形的顶点,则扇形的弧长等于 ▲ .(结果保留根号及).
|
17. 难度:中等 | |
若一元二次方程的两个实数根分别是3、,则= ▲ .
|
18. 难度:中等 | |
如图,已知A、B两点的坐标分别为、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为 ▲ .
|
19. 难度:中等 | |
(本题满分5分) 计算:
|
20. 难度:中等 | |
(本题满分5分) 先化简,再求值:,其中,
|
21. 难度:中等 | |
(本题满分5分) 解不等式组:
|
22. 难度:中等 | |
(本题满分6分) 解方程:.
|
23. 难度:中等 | |
(本题满分6分) 如图,是线段的中点,平分,平分,. (1)求证:≌; (2)若=50°,求的度数.
|
24. 难度:中等 | |
(本题满分6分) 学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②. 根据上述信息,回答下列问题: (1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲ 月份; (2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?
|
25. 难度:中等 | |
(本题满分8分) 如图,在中,,,BC=6.是AB边上的一个动点(异于、两点),过点分别作、边的垂线,垂足为、.设. (1)在中,= ▲ ; (2)当= ▲ 时,矩形的周长是14; (3)是否存在的值,使得的面积、的面积与矩形的面积同时相等?请说出你的判断,并加以说明.
|
26. 难度:中等 | |
(本题满分8分) 如图,四边形是面积为4的正方形,函数()的图象经过点. (1)求的值; (2)将正方形分别沿直线、翻折,得到正方形、.设线段、分别与函数()的图象交于点、,求线段EF所在直线的解析式.
|
27. 难度:中等 | |
(本题满分9分) 如图,在等腰梯形中,.是边的中点,以为圆心,长为半径作圆,交边于点.过作,垂足为.已知与边相切,切点为 (1)求证:; (2)求证:; (3)若,求的值.
|
28. 难度:中等 | |
(本题满分9分) 刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,,,;图②中,,,.图③是刘卫同学所做的一个实验:他将的直角边与的斜边重合在一起,并将沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合). (1)在沿方向移动的过程中,刘卫同学发现:、两点间的距离逐渐 ▲ . (填“不变”、“变大”或“变小”) (2)刘卫同学经过进一步地研究,编制了如下问题: 问题①:当移动至什么位置,即的长为多少时,、的连线与平行? 问题②:当移动至什么位置,即的长为多少时,以线段、、的长度为三边长的三角形是直角三角形? 问题③:在的移动过程中,是否存在某个位置,使得?如果存在, 求出的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.
|
29. 难度:中等 | |
(本题满分9分) 如图,以为顶点的抛物线与轴交于点.已知、两点坐标分别为(3,0)、(0,4). (1)求抛物线的解析式; (2)设是抛物线上的一点(、为正整数),且它位于对称轴的右侧.若以、、、为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标; (3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点,是否总成立?请说明理由.
|