1. 难度:中等 | |
的倒数是( ) A. B. C.2 D.
|
2. 难度:中等 | |
计算的结果正确的是( ) A. B. C. D.
|
3. 难度:中等 | |
美国航空航天局发布消息, 2011年3月19日,月球将到达19年来距离地球最 近的位置,它与地球的距离约为356000千米,其中356000用科学记数法表示为( ) A. B. C. D.
|
4. 难度:中等 | |
下列说法中正确的是( ) A.了解某一品牌的饮料是否含有塑化剂,适宜采用全面调查的方式; B.要描述我市一周内某种蔬菜价格的变化趋势,最适合用扇形统计图; C.若气象部门预报明天下雨的概率是80%,则明天下雨的时间占全天时间的80%; D.经过城市中某一有交通信号灯的路口,遇到红灯是随机事件.
|
5. 难度:中等 | |
直角三角形两直角边的长分别为,,它的面积为3,则与之间的函数关系 用图象表示大致是( )
|
6. 难度:中等 | |
若关于的方程的一个根为,则另一个根为( ) A. B. C.1 D.3
|
7. 难度:中等 | |
如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( ) A.9 B. C. D.
|
8. 难度:中等 | |
如图,在平面直角坐标系中,□OABC的顶点A在轴上,顶点B的坐标为 (6,4).若直线l经过点(1,0),且将□OABC分割成面积相等的两部分,则直线l的函 数解析式是( ) A. B. C. D.
|
9. 难度:中等 | |
实数,在数轴上对应点的位置如图所示,则 (填“>”“<”或“”).
|
10. 难度:中等 | |
分解因式: .
|
11. 难度:中等 | |
若,,则 .
|
12. 难度:中等 | |
如图,梯形ABCD内接于⊙O,AD∥BC,,则的度数为 .
|
13. 难度:中等 | |
请在如图的正方形网格纸中,以O为位似中心,将△ABC放大为原来的2倍.(画一个即可)
|
14. 难度:中等 | |
在4张卡片上分别写有1~4的整数.随机抽取一张后不放回,再随机抽取一张,那么抽取的两张卡片上的数字之和等于4的概率是 .
|
15. 难度:中等 | |
如图,在直角梯形ABCD中,AD∥BC,,,,点E在AB边上,且CE平分,DE平分,则点E到CD的距离为 .
|
16. 难度:中等 | |
火车匀速通过隧道时,火车在隧道内的长度(米)与火车行驶时间(秒)之间的关系用图象描述如图所示,有下列结论: ①火车的长度为120米; ②火车的速度为30米/秒; ③火车整体都在隧道内的时间为25秒; ④隧道长度为750米. 其中正确的结论是 .(把你认为正确结论的序号都填上)
|
17. 难度:中等 | |
(本题满分6分)计算:.
|
18. 难度:中等 | |
(本题满分8分)解方程.
|
19. 难度:中等 | |
(本题满分8分)如图,AB是⊙O的直径,过B点作⊙O的切线,交弦AE的延 长线于点C,作,垂足为D,若,,求DE的长.
|
20. 难度:中等 | |
(本题满分9分)某公司为了调动员工的积极性,决定实行目标管理,即确定个人年利润目标,根据目标完成的情况对员工进行适当的奖惩.为了确定这一目标,公司对上一年员工所创的年利润进行了抽样调查,并制成了如右的统计图. (1)求样本容量,并补全条形统计图; (2)求样本的众数,中位数和平均数; (3)如果想让一半左右的员工都能达到目标,你认为个人年利润定为多少合适?如果想确定一个较高的目标,个人年利润又该怎样定才合适?并说明理由.
|
21. 难度:中等 | |
(本题满分9分)某农机服务站销售一批柴油,平均每天可售出20桶,每桶盈利40元.为了支援我市抗旱救灾,农机服务站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,农机服务站平均每天可多售出2桶. (1)假设每桶柴油降价元,每天销售这种柴油所获利润为元,求与之间的函数关系式; (2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?
|
22. 难度:中等 | |
(本题满分10分) (1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求的度数. (2)如图②,在Rt△ABD中,,,点M,N是BD边上的任意两点,且,将△ABM绕点A逆时针旋转至△ADH位置,连接,试判断MN,ND,DH之间的数量关系,并说明理由. (3)在图①中,连接BD分别交AE,AF于点M,N,若,,,求AG,MN的长.
|
23. 难度:中等 | |
(本题满分10分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度. (1)实验操作: 在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中: (2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数 的图象上;平移2次后在函数 的图象上……由此我们知道,平移次后在函数 的图象上.(请填写相应的解析式) (3)探索运用:点P从点O出发经过次平移后,到达直线上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.
|
24. 难度:中等 | |
(本题满分12分)如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形. (1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标; (2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作,垂足为H,连接,.设点P的运动时间为秒. ①若△MPH与矩形AOCD重合部分的面积为1,求的值; ②点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
|