1. 难度:中等 | |
计算3×(2) 的结果是 A.5 B.5 C.6 D.6
|
2. 难度:中等 | |
如图,在△ABC中,D是BC延长线上一点, ∠B = 40°,∠ACD = 120°,则∠A等于 A.60° B.70° C.80° D.90°
|
3. 难度:中等 | |
下列计算中,正确的是 A. B. C. D.
|
4. 难度:中等 | |
如图,在□ABCD中,AC平分∠DAB,AB = 3, 则□ABCD的周长为 A.6 B.9 C.12 D.15
|
5. 难度:中等 | |
把不等式< 4的解集表示在数轴上,正确的是
|
6. 难度:中等 | |
如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是 A.点P B.点Q C.点R D.点M
|
7. 难度:中等 | |
化简的结果是 A. B. C. D.1
|
8. 难度:中等 | |
小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是 A. B. C. D.
|
9. 难度:中等 | |
一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是
|
10. 难度:中等 | |
如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是
A.7 B.8 C.9 D.10
|
11. 难度:中等 | |
如图,已知抛物线的对称轴为,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为
A.(2,3) B.(3,2) C.(3,3) D.(4,3)
|
12. 难度:中等 | |
将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成 一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是
A.6 B.5 C.3 D.2
|
13. 难度:中等 | |
的相反数是 .
|
14. 难度:中等 | |
如图,矩形ABCD的顶点A,B在数轴上, CD = 6,点A对应的数为,则点B所对应的数为 .
|
15. 难度:中等 | |
在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .
|
16. 难度:中等 | |
已知x = 1是一元二次方程的一个根,则 的值为 .
|
17. 难度:中等 | |
某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO = 8米,母线AB与底面半径OB的夹角为,,则圆锥的底面积是 平方米(结果保留π).
|
18. 难度:中等 | |
把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1 S2(填“>”、“<”或“=”).
|
19. 难度:中等 | |
(本小题满分8分)解方程:.
|
20. 难度:中等 | |
(本小题满分8分)如图1,正方形ABCD是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动. 1.(1)请在图1中画出光点P经过的路径; 2.(2)求光点P经过的路径总长(结果保留π).
|
21. 难度:中等 | |
22. 难度:中等 | |
(本小题满分9分) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N. 1.(1)求直线DE的解析式和点M的坐标; 2.(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上; 3.(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.
|
23. 难度:中等 | |
(本小题满分10分)观察思考 某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且 PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得 OH = 4分米,PQ = 3分米,OP = 2分米. 解决问题 1.(1)点Q与点O间的最小距离是 分米;点Q与点O间的最大距离是 分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是 分米. 2.(2)如图3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么? 3.(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是 分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.
|
24. 难度:中等 | |
(本小题满分10分) 在图1至图3中,直线MN与线段AB相交 于点O,∠1 = ∠2 = 45°. 1.(1)如图1,若AO = OB,请写出AO与BD 的数量关系和位置关系; 2.(2)将图1中的MN绕点O顺时针旋转得到 图2,其中AO = OB. 求证:AC = BD,AC ⊥ BD; 3.(3)将图2中的OB拉长为AO的k倍得到 图3,求的值.
|
25. 难度:中等 | ||||
(本小题满分12分) 如图,在直角梯形ABCD中,AD∥BC,,AD = 6,BC = 8,,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
1.(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围). 2.(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积. 3.(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
|
26. 难度:中等 | |
(本小题满分12分) 某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费). 1.(1)当x = 1000时,y = 元/件,w内 = 元; 2.(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围); 3.(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值; 4.(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大? 参考公式:抛物线的顶点坐标是.
|