1. 难度:中等 | |
在2.5,-2.5,0,3这四个数中,最小的数是【 】 A.2.5 B.-2.5 C.0 D.3
|
2. 难度:中等 | |
若在实数范围内有意义,则x的取值范围是【 】 A.x<3 B.x≤3 C.x>3 D.x≥3
|
3. 难度:中等 | |
在数轴上表示不等式x-1<0的解集,正确的是【 】
|
4. 难度:中等 | |
从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是【 】 A.标号小于6 B.标号大于6 C.标号是奇数 D.标号是3
|
5. 难度:中等 | |
若x1、x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是【 】 A.-2 B.2 C.3 D.1
|
6. 难度:中等 | |
某校2012年在校初中生的人数约为23万.数230000用科学计数法表示为【 】 A.23×104 B.2.3×105 C.0.23×103 D.0.023×106
|
7. 难度:中等 | |
如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A 恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是【 】 A.7 B.8 C.9 D.10
|
8. 难度:中等 | |
如图,是由4个相同小正方体组合而成的几何体,它的左视图是【 】
|
9. 难度:中等 | |
对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分, 4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数 是【 】 A.2.25 B.2.5 C.2.95 D.3
|
10. 难度:中等 | |
甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点 的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是【 】 A.①②③ B.仅有①② C.仅有①③ D.仅有②③
|
11. 难度:中等 | |
在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E, 作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为【 】 A.11+ B.11- C.11+或11- D.11-或1+
|
12. 难度:中等 | |
tan60°= ▲ .
|
13. 难度:中等 | |
某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45, 46.这组数据的众数是 ▲ .
|
14. 难度:中等 | |
如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B, 点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为3,则k的值为 ▲ .
|
15. 难度:中等 | |
在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点 C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是 ▲ .
|
16. 难度:中等 | |
在平面直角坐标系中,直线y=kx+3经过点(-1,1),求不等式kx+3<0的解集.
|
17. 难度:中等 | |
如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
|
18. 难度:中等 | |
一个口袋中有4个相同的小球,分别与写有字母A、B、C、D,随机地抽出一 个小球后放回,再随机地抽出一个小球. (1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果; (2)求两次抽出的球上字母相同的概率.
|
19. 难度:中等 | |
如图,在平面直角坐标系中,点A、B的坐标分别为(-1,3)、(-4,1),先 将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1 绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2. (1)画出线段A1B1、A2B2; (2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.
|
20. 难度:中等 | |
在锐角△ABC中,BC=5,sinA=. (1)如图1,求△ABC外接圆的直径; (2)如图2,点I为△ABC的内心,BA=BC,求AI的长。
|
21. 难度:中等 | |
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和 矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的 距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系. (1)求抛物线的解析式; (2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数 关系且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
|
22. 难度:中等 | |
已知△ABC中,AB=,AC=,BC=6. (1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长; (2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点 的三角形为格点三角形. ①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明); ②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需 证明).
|
23. 难度:中等 | |
如图1,点A为抛物线C1:的顶点,点B的坐标为(1,0),直线AB交抛物线C1于另一点C. (1)求点C的坐标; (2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a 交直线AB于F,交抛物线C1于G,若FG:DE=4∶3,求a的值; (3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴 于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值. 图1 图2
|