1. 难度:中等 | |
2的倒数是【 】 A.2 B.﹣2 C. D.﹣
|
2. 难度:中等 | |
计算﹣2a2+a2的结果为【 】 A.﹣3a B.﹣a C.﹣3a2 D.﹣a2
|
3. 难度:中等 | |
某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为.二月份白菜价格最稳定的市场是【 】 A.甲 B.乙 C.丙 D.丁
|
4. 难度:中等 | |
下列图形中不是中心对称图形的是【 】 A.矩形 B.菱形 C.平行四边形 D.正五边形
|
5. 难度:中等 | |
如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为【 】 A.
|
6. 难度:中等 | |
计算 ▲ .
|
7. 难度:中等 | |
使有意义的x的取值范围是 ▲ .
|
8. 难度:中等 | |
如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为 ▲ .
|
9. 难度:中等 | |
不等式组的解集是 ▲ .
|
10. 难度:中等 | |
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE= ▲ .
|
11. 难度:中等 | |
计算:.
|
12. 难度:中等 | |
先化简,再求值:,其中.
|
13. 难度:中等 | |
如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线. (1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明) (2)设DN与AM交于点F,判断△ADF的形状.(只写结果)
|
14. 难度:中等 | |
已知关于x的一元二次方程x2+2x+m=0. (1)当m=3时,判断方程的根的情况; (2)当m=﹣3时,求方程的根.
|
15. 难度:中等 | |
某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支. (1)求第一次每支铅笔的进价是多少元? (2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
|
16. 难度:中等 | |
如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:, )
|
17. 难度:中等 | |
某学校课程安排中,各班每天下午只安排三节课. (1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率; (2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果).
|
18. 难度:中等 | |
如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE. 求证:(1)△ADA′≌△CDE; (2)直线CE是线段AA′的垂直平分线.
|
19. 难度:中等 | |
如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B. (1)求二次函数与一次函数的解析式; (2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.
|
20. 难度:中等 | |
观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, … 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据上述各式反映的规律填空,使式子称为“数字对称等式”: ①52× = ×25; ② ×396=693× . (2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.
|
21. 难度:中等 | |
已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上. (1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果); (2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论; (3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.
|
22. 难度:中等 | |
如图,在等腰梯形ABCD中,ABDC,AB=3,DC=,高CE=2,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为S1、被直线RQ扫过的图形面积为S2,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒. (1)填空:∠AHB= ;AC= ; (2)若S2=3S1,求x; (3)设S2=mS1,求m的变化范围.
|