1. 难度:中等 | |
下列运算正确的是( ) A. B. C. D.
|
2. 难度:中等 | |
一个自然数的算术平方根为,则和这个自然数相邻的下一个自然数是( ) A. B. C. D.
|
3. 难度:中等 | |
太阳内部高温核聚变反应释放的辐射能功率为千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字) A. B. C. D.
|
4. 难度:中等 | |
已知关于的一元二次方程的两个实数根是,且,则的值是( ) A.8 B. C.6 D.5
|
5. 难度:中等 | |
某班50名同学分别站在公路的A、B两点处,A、B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( ) A.A点处 B.线段的中点处 C.线段上,距A点米处 D.线段上,距A点400米处
|
6. 难度:中等 | |
关于的方程有实数根,则整数的最大值是( ) A.6 B.7 C.8 D.9
|
7. 难度:中等 | |
甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A.3 B.4 C.5 D.6
|
8. 难度:中等 | |
如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米. A.25 B. C. D.
|
9. 难度:中等 | |
已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若,则BD的长为( ) A. B. C. D.
|
10. 难度:中等 | |
如图,已知中,,将绕顶点C顺时针旋转至的位置,且三点在同一条直线上,则点A经过的最短路线的长度是( )cm. A.8 B. C. D.
|
11. 难度:中等 | |
如图,在中,,分别以为圆心,以的长为半径作圆,将截去两个扇形,则剩余(阴影)部分的面积为( )cm2. A. B. C. D.
|
12. 难度:中等 | |
在同一平面直角坐标系中,反比例函数与一次函数交于两点,O为坐标原点,则的面积为( ) A.2 B.6 C.10 D.8
|
13. 难度:中等 | |
分解因式: .
|
14. 难度:中等 | |
方程的解是 .
|
15. 难度:中等 | |
在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).画出绕点O逆时针旋转90°后的.
|
16. 难度:中等 | |
如图,正方形的边长为10,点E在CB的延长线上,,点P在边CD上运动(C、D两点除外),EP与AB相交于点F,若,四边形的面积为,则关于的函数关系式是 .
|
17. 难度:中等 | |
已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是 .
|
18. 难度:中等 | |
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择: 方案一:从纸箱厂定制购买,每个纸箱价格为4元; 方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元. (1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
|
19. 难度:中等 | |||||||||||||||||||||||
新星公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分,有4位应聘者的得分如下表所示.
(1)写出4位应聘者的总分; (2)就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出三项中4人所得分数的方差; (3)由(1)和(2),你对应聘者有何建议?
|
20. 难度:中等 | |
已知,延长BC到D,使.取的中点,连结交于点. (1)求的值; (2)若,求的长.
|
21. 难度:中等 | |
要对一块长60米、宽40米的矩形荒地进行绿化和硬化. (1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形面积的,求P、Q两块绿地周围的硬化路面的宽. (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为和,且到的距离与到的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
|
22. 难度:中等 | |
如图所示,圆是的外接圆,与的平分线相交于点,延长交圆于点,连结. (1)求证:; (2)若圆的半径为10cm,,求的面积.
|
23. 难度:中等 | |
在四边形中,,且.取的中点,连结. (1)试判断三角形的形状; (2)在线段上,是否存在点,使.若存在,请求出的长;若不存在,请说明理由.
|
24. 难度:中等 | |
如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点. (1)求抛物线的解析式; (2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长. (3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.
|