1. 难度:简单 | |
将点(-3,1)向右平移4个单位长度,再向上平移2个单位长度,可以得到对应点_______.
|
2. 难度:简单 | |
三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为( ) A.(5,0),(4,2),(6,-1) B.(-1,0),(-2,2),(0,-1) C.(-1,2),(-2,4),(0,1) D.(5,2),(4,4),(6,1)
|
3. 难度:简单 | |
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向________(或向_______)平移______个单位长度.
|
4. 难度:简单 | |
如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为多少?将它沿y轴正方向平移4个单位长度呢?分别画出平移后的图形.
|
5. 难度:简单 | |
如图,梯形A′B′C′D′可以由梯形ABCD经过怎样的平移得到?对应点的坐标有什么变化?
|
6. 难度:简单 | |
如图,三角形ABC是由三角形A1B1C1平移后得到的,三角形ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5),求A1、B1、C1的坐标.
|
7. 难度:简单 | |
如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是________.
|
8. 难度:简单 | |
在直角坐标系中,A(-3,4),B(-1,-2),O为原点,求三角形AOB的面积.
|
9. 难度:简单 | |
把点A(3,2)向下平移4个单位长度,可以得到对应点A1_____,再向左平移6个单位长度,可以得到对应点A2_______,则点A1与点A关于______对称,点A2与点A关于_______对称,点A2与点A1关于______对称.
|
10. 难度:简单 | |
如图所示,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0). (1)观察每次变换前后的三角形有何变化,找出规律,按些变换规律将△OA3B3变换成△OA4B4,则A4的坐标是_______,B4的坐标是_________. (2)若按第(1)题的规律将△OAB进行了n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测An的坐标是_______,Bn的坐标是_______.
|
11. 难度:简单 | |
如下图,这是一个利用平面直角坐标系画出的某动物园地图,如果猴山和大象馆的坐标分别是(-5,3)和(-5,-3),虎豹园的地点是(4,2),你能在此图上标出虎豹园的位置吗?
|
12. 难度:简单 | |
如图,有一条小船, (1)若把小船平移,使点A平移到点B,请你在图中画出平移后的小船; (2)若该小船先从点A航行到达岸边L的点P处补给后,再航行到点B,但要求航程最短,试在图中画出点P的位置.
|
13. 难度:简单 | |
蜘蛛网与线路最短问题 爸爸出差前,留给小华一道题: 下图是某地区的交通网,其中小圈代表城镇,小圈间的连线代表道路,连线旁的a1表示该段道路的千米数,请你选择一条,从A到B的最短线路. 小华绞尽脑汁,想了一天还是没有眉目.吃过晚饭,他信步走进小树林,东瞅瞅,西瞧瞧,一眼落到一张硕大的蜘蛛网上,这张蜘蛛网,多像那张交通图啊!,突然,一只小虫撞到网上,小虫奋力挣扎,于是便不断地拉紧连到网中心的最短的那根丝,蜘蛛沿着那根丝,迅速出击,抓住了小虫,小华若有所悟,口里直嚷嚷:“有了!有了!”很快地解出了这道题,你知道小华是用什么方法解决这道题的吗?
|