1. 难度:中等 | |
在实数0,-π, ,-4中,最小的数是【 】 A.0 B.-π C. D.-4
|
2. 难度:中等 | |
2011年3月11日,日本发生了里氏9.0级大地震,导致当天地球自转时间减少了0.0000016秒,将0.0000016用科学记数法表示为【 】 B. C. D.
|
3. 难度:中等 | |
下列运算正确的是【 】 A.x3+x2=2x6 B.3x3÷x=2x2 C.x4·x2=x8 D.(x3)2=x6
|
4. 难度:中等 | |
四张完全相同的卡片上分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画的图形恰好是中心对称图形的概率为【 】 A. B.1 C. D.
|
5. 难度:中等 | |
如左下图是一个由多个正方体堆积而成的几何体俯视图。图中所示数字为该小 正方体的个数,则这个几何体的左视图是【 】
|
6. 难度:中等 | |
如下图OA=OB=OC且∠ACB=30°,则∠AOB的大小是【 】 A.40° B.50° C.60° D.70°
|
7. 难度:中等 | |
把抛物线的图像向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为,则b的值为【 】 A.2 B.4 C.6 D.8
|
8. 难度:中等 | |
直线与反比例函数的图象(x<0)交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为【 】 A.-2 B.-4 C.-6 D.-8
|
9. 难度:中等 | |
如图,四边形OABC为菱形,点A、B在以O为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE的面积为【 】 A. B. C. D.
|
10. 难度:中等 | |
在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为【 】 A. B. C. D.
|
11. 难度:中等 | |
分解因式:2a3-8a= .
|
12. 难度:中等 | |
设x1、x2是一元二次方程x2+5x-3=0的两个实根,且,则a= .
|
13. 难度:中等 | |
如图,ABCD 中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,sin∠BAE=,则CF= .
|
14. 难度:中等 | |
若关于x的不等式组的解集为x<2,则a的取值范围是 .
|
15. 难度:中等 | |
在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 。
|
16. 难度:中等 | |||||||||||||
.某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:
设每周制作西服x件,休闲服y件,衬衣z件。 (1)请你分别从件数和工时数两个方面用含有x,y 的代数式表示衬衣的件数z, (2)求y与x之间的函数关系式。 (3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?
|
17. 难度:中等 | |
已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2. (1)求抛物线的解析式; (2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t 为何值时,s有最小值,并求出最小值。 (3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。
|