1. 难度:中等 | |
4的算术平方根是( ) A.±2 B.± C. D.2 |
2. 难度:中等 | |
计算(a3)2的结果是( ) A.a6 B.a9 C.a5 D.a8 |
3. 难度:中等 | |
如图所示的几何体的主视图是( ) A. B. C. D. |
4. 难度:中等 | |
《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A.7.26×1010元 B.72.6×109元 C.0.726×1011元 D.7.26×1011元 |
5. 难度:中等 | |
如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( ) A. B. C. D. |
6. 难度:中等 | |
因式分【解析】 2x3-8x= . |
7. 难度:中等 | |
已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC= cm. |
8. 难度:中等 | |
一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元. |
9. 难度:中等 | |
在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n= . |
10. 难度:中等 | |
用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n个图形中需要黑色瓷砖 块(用含n的代数式表示). |
11. 难度:中等 | |
计算:|-|+-sin30°+(π+3). |
12. 难度:中等 | |
解方程:. |
13. 难度:中等 | |
如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式. |
14. 难度:中等 | |
如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD. (1)用尺规作图的方法,过D点作DM⊥BE,垂足是M;(不写作法,保留作图痕迹) (2)求证:BM=EM. |
15. 难度:中等 | |
如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414) |
16. 难度:中等 | |
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? |
17. 难度:中等 | |
某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图. |
18. 难度:中等 | |
在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过D点作DE∥AC交BC的延长线于点E. (1)求△BDE的周长; (2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP=DQ. |
19. 难度:中等 | |
如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推. (1)求矩形ABCD的面积; (2)求第1个平行四边形OBB1C,第2个平行四边形和第6个平行四边形的面积. |
20. 难度:中等 | |
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G, 求证:阴影部分四边形OFCG的面积是△ABC的面积的. (2)如图2,若∠DOE保持120°角度不变, 求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的. |
21. 难度:中等 | |||||||||||||||||||||
小明用下面的方法求出方程2-3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
|
22. 难度:中等 | |
正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直. (1)证明:Rt△ABM∽Rt△MCN; (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积; (3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值. |