1. 难度:中等 | |
已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( ) A.0.21×10-4 B.2.1×10-4 C.2.1×10-5 D.21×10-6 |
2. 难度:中等 | |
下列奥运会会徽的图案中是轴对称图形的是( ) A. B. C. D. |
3. 难度:中等 | |
某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A.中位数 B.众数 C.平均数 D.极差 |
4. 难度:中等 | |
如图,桌面上有一个一次性纸杯,它的俯视图应是( ) A. B. C. D. |
5. 难度:中等 | |
如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,如图所示的图象中最符合故事情景的是( ) A. B. C. D. |
6. 难度:中等 | |
25的算术平方根是 . |
7. 难度:中等 | |
有一个直角梯形零件ABCD,AD∥BC,斜腰DC的长为10cm,∠D=120°,则该零件另一腰AB的长为 cm.(结果不取近似值) |
8. 难度:中等 | |
已知反比例函数y=,其图象在第一、第三象限内,则k的值可为 .(写出满足条件的一个k的值即可). |
9. 难度:中等 | |
如图所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有 (只填序号). |
10. 难度:中等 | |
观察下列各式: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1, 根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)= (其中n为正整数). |
11. 难度:中等 | |
计算sin30°+(3π-1). |
12. 难度:中等 | |
解方程:(x-3)2+4x(x-3)=0. |
13. 难度:中等 | |
如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,如果∠1=50°,那么∠2的度数是 度. |
14. 难度:中等 | |
温度与我们的生活息息相关,你仔细观察过温度计吗?如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉),设摄氏温度为x(℃),华氏温度为y(℉),则y是x的一次函数. (1)仔细观察图中数据,试求出y与x之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少? |
15. 难度:中等 | |
端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子. (1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率; (2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由. |
16. 难度:中等 | |
如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点. 求证:(1)F是BC的中点; (2)∠A=∠GEF. |
17. 难度:中等 | |
如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号). |
18. 难度:中等 | |
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点) (1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长. |
19. 难度:中等 | |
下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n. (1)将方程组1的解填入图中; (2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中; (3)若方程组的解是,求m的值,并判断该方程组是否符合(2)中的规律? |
20. 难度:中等 | |||||||||||||
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止. 请你认真观察思考后回答下列问题: (1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
①当n=2时,求S1:S2的值; ②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由. |
21. 难度:中等 | |
如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少? (2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长; (3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断. |
22. 难度:中等 | |
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况. 研究: (1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明; (2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由; (3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明. |