1. 难度:中等 | |
截止2008年6月7日12时,全国各地支援四川地震灾区的临时安置房已经安装了40 600套.这个数用科学记数法表示为( ) A.0.406×105套 B.4.06×104套 C.40.6×103套 D.406×102套 |
2. 难度:中等 | |
如图,直线l1∥l2,l分别与l1,l2相交,如果∠2=120°,那么∠1的度数是( ) A.30° B.45° C.60° D.75° |
3. 难度:中等 | |
下列事件中是必然事件的是( ) A.阴天一定下雨 B.随机掷一枚质地均匀的硬币,正面朝上 C.男生的身高一定比女生高 D.将油滴在水中,油会浮在水面上 |
4. 难度:中等 | |
如图,由几个相同的小正方体搭成一个几何体,它的俯视图是( ) A. B. C. D. |
5. 难度:中等 | |
下列命题中正确的是( ) A.两条对角线互相平分的四边形是平行四边形 B.两条对角线相等的四边形是矩形 C.两条对角线互相垂直的四边形是菱形 D.两条对角线互相垂直且平分的四边形是正方形 |
6. 难度:中等 | |
若反比例函数y=(k≠0)的图象经过点(2,-1),则这个函数的图象一定经过点( ) A.(,-2) B.(1,2) C.(-1,) D.(1,-2) |
7. 难度:中等 | |
不等式组的解集在数轴上表示正确的是( ) A. B. C. D. |
8. 难度:中等 | |
下列图形中是轴对称图形的是( ) A. B. C. D. |
9. 难度:中等 | |
已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( ) A.45° B.60° C.75° D.90° |
10. 难度:中等 | |
如图是对称中心为点O的正八边形.如果用一个含45°角的直角三角板的角,借助点O(使角的顶点落在点O处)把这个正八边形的面积n等分.那么n的所有可能的值有( ) A.2个 B.3个 C.4个 D.5个 |
11. 难度:中等 | |
分解因式:x3y-4xy= . |
12. 难度:中等 | |
体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是S甲2=6.4,乙同学的方差是S乙2=8.2,那么这两名同学跳高成绩比较稳定的是 同学. |
13. 难度:中等 | |
一元二次方程x2-2x+1=0的根为 . |
14. 难度:中等 | |
如图,D、E分别是△ABC的边AB,AC上的点,DE∥BC,=2,则S△ADE:S△ABC= . |
15. 难度:中等 | |
一个圆锥底面周长为4πcm,母线长为5cm,则这个圆锥的侧面积是 cm2. |
16. 难度:中等 | |
如图,观察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有 个. |
17. 难度:中等 | |
先化简,再求值:,其中x满足x2-3x+2=0. |
18. 难度:中等 | |
如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F. (1)猜想:AD与CF的大小关系; (2)请证明上面的结论. |
19. 难度:中等 | |
如图,在10×10的正方形网格中,每个小正方形的边长均为1个单位. (1)作△ABC关于点P的对称图形△A′B′C′; (2)再把△A′B′C′,绕着C'逆时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′.(不要求写画法) |
20. 难度:中等 | ||||||||||||||||||||||
某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计: 频率分布表
(1)补全频率分布表; (2)补全频数分布直方图; (3)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”,这次15000名学生中约有多少人评为“D”?如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由. |
21. 难度:中等 | |||||||||||||||||
甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表) 甲超市:
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由. |
22. 难度:中等 | |
2008年初,我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米) |
23. 难度:中等 | |
如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC. (1)若∠CPA=30°,求PC的长; (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小. |
24. 难度:中等 | |||||||||||||
我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题: ①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式; ②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案; ③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
|
25. 难度:中等 | |
已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点. (1)求抛物线的函数关系式; (2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值; (3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由. |