1. 难度:中等 | |
下列各运算中,错误的个数是( ) ①3+3-1=-3;②-=;③(2a2)3=8a5;④-a8÷a4=-a4 A.1 B.2 C.3 D.4 |
2. 难度:中等 | |
在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是( ) A.甲 B.乙 C.丙 D.丁 |
3. 难度:中等 | |
如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是( ) A. B. C. D. |
4. 难度:中等 | |
化简的结果是( ) A.-x-y B.y- C.x-y D.x+y |
5. 难度:中等 | |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则直线y=ax+b与反比例函数y=在同一坐标系内的大致图象为( ) A. B. C. D. |
6. 难度:中等 | |
小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A.37.2分钟 B.48分钟 C.30分钟 D.33分钟 |
7. 难度:中等 | |
两个完全相同的长方体的长、宽、高分别是5cm、4cm、3cm,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是( ) A.158cm2 B.176cm2 C.164cm2 D.188cm2 |
8. 难度:中等 | |
如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值一定等于( ) A.6 B.8 C.4 D.4 |
9. 难度:中等 | |
计算:2-1+(1-)-cos60°= . |
10. 难度:中等 | |
不等式组:的解集为 . |
11. 难度:中等 | |
如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为 °. |
12. 难度:中等 | |
如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2-2mx+n2=0有实数根的概率为 . |
13. 难度:中等 | |
如图,在直角坐标系中,四边形OABC为正方形,顶点A、C在坐标轴上,以边AB为弦的⊙M与x轴相切,M在双曲线上,若A(0,8),则k= . |
14. 难度:中等 | |
如图是一山谷的横断面示意图,宽AA′为15m,用曲尺(两直尺相交成直角)从山谷两侧测量出OA=1m,OB=3m,O′A′=0.5m,O′B′=3m(点A,O,O′A′在同一条水平线上),则该山谷的深h为 m. |
15. 难度:中等 | |
已知x=-1,求代数式的值. |
16. 难度:中等 | |
解方程: |
17. 难度:中等 | |
如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由. |
18. 难度:中等 | |
已知菱形ABCD中,∠A=72°,请设计三种不同的分法,将菱形ABCD分割成四个三角形,使得分割成的每个三角形都是等腰三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,例如图,不要求写出画法,不要求证明.)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法. |
19. 难度:中等 | |
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE. (1)判断直线AC与△DBE外接圆的位置关系,并说明理由; (2)若AD=6,AE=6,求BC的长. |
20. 难度:中等 | |
学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据途中提供的信息,解答下列问题: (1)该班共有______名学生; (2)将“骑自行车”部分的条形统计图补充完整; (3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数; (4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数. |
21. 难度:中等 | |
已知:关于x的一元二次方程x2-(2m+1)x+m2+m-2=0. (1)求证:不论m取何值,方程总有两个不相等的实数根; (2)若方程的两个实数根x1,x2满足,求m的值. |
22. 难度:中等 | |
在同一时刻的物高与水平地面上的影长成正比例.如图,小莉发现垂直地面的电线杆AB的影子落在地面和土坡上,影长分别为BC和CD,经测量得BC=20m,CD=8m,CD与地面成30°角,且此时测得垂直于地面的1m长标杆在地面上影长为2m,求电线杆AB的长度. |
23. 难度:中等 | |
如图,在平面直角坐标系中,点P(x,y)是第一象限直线y=-x+6上的点,点A(5,0),O是坐标原点,△PAO的面积为S. (1)求S与x的函数关系式; (2)当S=10时,求tan∠POA的值. |
24. 难度:中等 | |
某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m. (1)在如图所示的平面直角坐标系中,求抛物线的表达式. (2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户? |
25. 难度:中等 | |
如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示). (1)求S△DBF; (2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF; (3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由. |