1. 难度:中等 | |
计算3-1的结果是( ) A. B. C.3 D.-3 |
2. 难度:中等 | |
函数中自变量x的取值范围是( ) A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 |
3. 难度:中等 | |
不等式组的解集是( ) A.x<2 B.x>-1 C.-1<x<2 D.无解 |
4. 难度:中等 | |
在下列各电视台标图案中,是轴对称图形的是( ) A. B. C. D. |
5. 难度:中等 | |
小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( ) A. B. C. D. |
6. 难度:中等 | |
长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是( ) A.12cm2 B.8cm2 C.6cm2 D.4cm2 |
7. 难度:中等 | |
如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P的度数为( ) A.120° B.90° C.60° D.75° |
8. 难度:中等 | |
刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如:把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m,-2m)放入其中,得到实数2,则m的值是( ) A.3 B.-1 C.-3或1 D.3或-1 |
9. 难度:中等 | |
一副三角板如图叠放在一起,则图中∠α的度数为( ) A.75° B.60° C.65° D.55° |
10. 难度:中等 | |
2010年4月14日7时49分,青海省玉树县发生了7.1级地震后,武警某部官兵第一时间接到上级命令,立即乘车前往玉树地震灾区抗震救灾,前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往,若部队离开驻地的时间为t(时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是( ) A. B. C. D. |
11. 难度:中等 | |
分解因式:2x3-8xy2= . |
12. 难度:中等 | |
2010年3月5日中国国家发展和改革委员会表示,2010年将比2009年人民币7 161.4亿元的农业支出预算增长14%.请用科学记数法表示出2010年中国农业支出预算约为 元.(保留三位有效数字) |
13. 难度:中等 | |
如图是根据我县教育局网站上公布的某初中为玉树地震灾区捐款的情况而制作的统计图,已知该校在校学生有1000人,请根据统计图计算该校共捐款 元. |
14. 难度:中等 | |
如图,菱形OABC中,∠A=120°,OA=2,将菱形OABC绕点O顺时针旋转90°到OA′B′C′,则图中由弧BB′,B′A′,弧A′C,CB围成的阴影部分的面积是 . |
15. 难度:中等 | |
方程的解为 . |
16. 难度:中等 | |
某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上探测点A、B相距4m,探测线与地面的夹角分别是30°和60°,试确定生命所在点C的深度(结果精确到0.1m,参考数据:≈1.414,≈1.732) |
17. 难度:中等 | |
如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BC=200cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少? |
18. 难度:中等 | |
如图,将正方体沿粗线剪开. (1)以所给的正方形ABCD为基础,画出它的展开图; (2)若正方体的棱长为2cm,在正方体的顶点A处有一只小虫沿着正方体的表面爬行到顶点E处,求小虫爬行的最短距离. |
19. 难度:中等 | |
水果种植大户小芳,为了吸引更多的顾客,组织了观光采摘游活动,每一位来采摘水果的顾客都有一次抽奖机会,在一只不透明的盒子里有A(苹果),B(梨子),C(葡萄),D(葡萄)四张外形完全相同的卡片,抽奖时先随机抽取一张卡片,再从盒子中剩下的3张中随机抽取第二张. (1)请利用树状图或列表的方法,表示前后两次抽得的卡片所有可能的情况; (2)如果抽得的两张卡片是同一种水果图片就可获得奖励,那么得到奖励的概率是多少? |
20. 难度:中等 | |
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H. (1)求证:△ABE∽△ADF; (2)若AG=AH,求证:四边形ABCD是菱形. |
21. 难度:中等 | |
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元? |
22. 难度:中等 | |
已知∠MAN,AC平分∠MAN. (1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC; (2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC; ②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α的三角函数表示),并给出证明. |
23. 难度:中等 | |
阅读材料: 如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法: S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题: 如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式; (2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB; (3)是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由. |