1. 难度:中等 | |
下列计算错误的是( ) A.-(-2)=2 B. C.2x2+3x2=5x2 D.(a2)3=a5 |
2. 难度:中等 | |
张颖同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出( ) A.一周支出的总金额 B.一周各项支出的金额 C.一周内各项支出金额占总支出的百分比 D.各项支出金额在一周中的变化情况 |
3. 难度:中等 | |
下列各图中,不是中心对称图形的是( ) A. B. C. D. |
4. 难度:中等 | |
若x2-x-2=0,则的值等于( ) A. B. C. D.或 |
5. 难度:中等 | |
对任意实数x,点P(x,x2-2x)一定不在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
6. 难度:中等 | |
已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是( ) A.m> B.m≥ C.m>且m≠2 D.m≥且m≠2 |
7. 难度:中等 | |
如图,现有一扇形纸片,圆心角∠AOB为120°,弦AB的长为2cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( ) A.cm B.πcm C.cm D.πcm |
8. 难度:中等 | |
如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O,H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为( ) A. B. C.π D. |
9. 难度:中等 | |
当s=t+时,代数式s2-2st+t2的值为 . |
10. 难度:中等 | |
不等式组的整数解的个数为 . |
11. 难度:中等 | |
如图,AB∥DE,∠E=65°,则∠B+∠C= . |
12. 难度:中等 | |
有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是 . |
13. 难度:中等 | |
m是方程x2+x-1=0的根,则式子m3+2m2+2007的值为 . |
14. 难度:中等 | |
如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(x>0)的图象上,则点E的坐标是( , ). |
15. 难度:中等 | |
计算:+2cos60°+. |
16. 难度:中等 | |
若关于x的分式方程的解是正数,求a的取值范围. |
17. 难度:中等 | |
如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F. (1)猜想:AD与CF的大小关系; (2)请证明上面的结论. |
18. 难度:中等 | |
如图是一块3×5的矩形木板去掉一块1×2的小矩形后剩下的图形,现想把它分割后拼成一个大的正方形,画出分割线及拼接后的正方形. |
19. 难度:中等 | |
如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6. (1)求⊙O的半径; (2)求图中阴影部分的面积. |
20. 难度:中等 | |
某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图所示的统计图.根据图中信息解答下列问题: (1)哪一种品牌粽子的销售量最大? (2)补全条形统计图; (3)写出A品牌粽子在图中所对应的圆心角的度数; (4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议. |
21. 难度:中等 | |
已知关于x的一元二次方程x2-2x-a=0. (1)如果此方程有两个不相等的实数根,求a的取值范围; (2)如果此方程的两个实数根为x1,x2,且满足,求a的值. |
22. 难度:中等 | |
如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部M的仰角为30度.两人相距28米且位于旗杆两侧(点B,N,D在同一条直线上).请求出旗杆MN的高度.(参考数据:≈1.4,≈1.7,结果保留整数) |
23. 难度:中等 | |
如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求点C的坐标. |
24. 难度:中等 | |||||||||||||
“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案; (3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费. |
25. 难度:中等 | |
如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处. (1)直接写出点E、F的坐标; (2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. |