1. 难度:中等 | |
下列运算正确的是( ) A.a+a2=a3 B.(3a)2=6a2 C.a6÷a2=a3 D.a•a3=a4 |
2. 难度:中等 | |
如图是甲、乙两位同学某学期的四次数学考试成绩的折线统计图,则这四次数学考试成绩中( ) A.乙成绩比甲成绩稳定 B.甲成绩比乙成绩稳定 C.甲、乙两成绩一样稳定 D.不能比较两人成绩的稳定性 |
3. 难度:中等 | |
如图所示几何体的左视图是( ) A. B. C. D. |
4. 难度:中等 | |
新学年到了,爷爷带小红到商店买文具.从家中走了20分钟到一个离家900米的商店,在店里花了10分钟买文具后,用了15分钟回到家里.下面图形中表示爷爷和小红离家的距离y(米)与时间x(分)之间函数关系的是( ) A. B. C. D. |
5. 难度:中等 | |
下列命题中,正确的是( ) A.若a•b=0,则a=0,且b=0 B.若a•b=0,则a=0,或b=0 C.若a•b>0,则a>0,b>0 D.若a•b<0,则a<0,b<0 |
6. 难度:中等 | |
中国2010年上海世博会于7月1日入园人数达369800人,数据369800用科学记数法表示为 . |
7. 难度:中等 | |
已知的倒数是a,a的相反数是b,则|b|-a2= . |
8. 难度:中等 | |
有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是 . |
9. 难度:中等 | |
如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P的个数为 . |
10. 难度:中等 | |
在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱数共有 . |
11. 难度:中等 | |
如果关于x的方程x2-2x+a=0有两个相等的实数根,那么a2-a-2= . |
12. 难度:中等 | |
不等式组的整数解是 . |
13. 难度:中等 | |
如图,∠BAC位于6×6的方格纸中,则tan∠BAC= . |
14. 难度:中等 | |
如图,已知点A在双曲线y=上,且OA=4,过A作AC⊥x轴于C,OA的垂直平分线交OC于B,则△AOC的面积= ;△ABC的周长为 . |
15. 难度:中等 | |
某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…按此规律,那么请你推测第n组应该有种子数是 粒. |
16. 难度:中等 | |
(1)解方程:; (2)计算:. |
17. 难度:中等 | |
如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上. (1)求证:△AOC≌△BOD; (2)若AD=1,BD=2,求CD的长. |
18. 难度:中等 | |
吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图: 根据统计图解答: (1)同学们一共随机调查了多少人? (2)请你把统计图补充完整; (3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式? |
19. 难度:中等 | |
国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系. (1)直接写出y2与x之间的函数关系式; (2)求月产量x的范围; (3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少? |
20. 难度:中等 | |
如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒). (1)当t=0.5时,求线段QM的长; (2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值; (3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值?若是,试求这个定值;若不是,请说明理由. |
21. 难度:中等 | |
如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx+c过A、C、O三点. (1)求点C的坐标和抛物线的解析式; (2)过点B作直线与x轴交于点D,且OB2=OA•OD,求证:DB是⊙C的切线; (3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形?如果存在,求出点P的坐标;如果不存在,请说明理由. |