1. 难度:中等 | |
-27的立方根是( ) A.3 B.-3 C.9 D.-9 |
2. 难度:中等 | |
通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20 000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( ) A.3.1×10-5 B.3.1×10-6 C.3.1×10-7 D.3.1×10-8 |
3. 难度:中等 | |
在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为( ) A.12.36cm B.13.6cm C.32.36cm D.7.64cm |
4. 难度:中等 | |
已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为( ) A.20°或100° B.120° C.20°或120° D.36° |
5. 难度:中等 | |
反比例函数y=在第一象限的图象如图所示,则k的值可能是( ) A.1 B.2 C.3 D.4 |
6. 难度:中等 | |
如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( ) A. B. C.2.5 D.2.3 |
7. 难度:中等 | |
|2-|= . |
8. 难度:中等 | |
函数的自变量x的取值范围是 . |
9. 难度:中等 | ||||||||||||||||||||||
从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
|
10. 难度:中等 | |
在一次体检中,测得某小组5名同学的身高分别是:170,162,155,160,168(单位:厘米),则这组数据的极差是 厘米. |
11. 难度:中等 | |
在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= . |
12. 难度:中等 | |
如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF= 度. |
13. 难度:中等 | |||||||||
已知y是x的一次函数,右表列出了部分对应值,则m= .
|
14. 难度:中等 | |
如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则tan∠A′BC′的值为 . |
15. 难度:中等 | |
锐角△ABC中,BC=6,S△ABC=12,两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0),当x= ,公共部分面积y最大,y最大值= . |
16. 难度:中等 | |
先化简,再求值:,其中. |
17. 难度:中等 | |
如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系. (1)画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是______; (2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C旋转到点C2经过的路径的长度. |
18. 难度:中等 | |
某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题: (1)求在这次活动中一共调查了多少名学生; (2)在扇形统计图中,求“教师”所在扇形的圆心角的度数; (3)补全两幅统计图. |
19. 难度:中等 | |
某超市规定:凡一次购买大米100千克以上可以按原价打折出售,购买100千克以下(包括100千克)只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要270元;若多买20千克,则按打折价格付款,需要264元. (1)小明家原计划购买大米的数量的范围是______; (2)若按原价购买4千克与打折购买5千克的款相同,那么小明家原计划买多少大米? |
20. 难度:中等 | |
如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米) (已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.) |
21. 难度:中等 | ||||||||||
某汽车经销公司计划经销A、B两种品牌的轿车50辆,该公司经销这50辆轿车的成本不少于1240万元,但不超过1244万元,两种轿车的成本和售价如下表.
(2)根据市场调查,一段时期内,B牌轿车售价不会改变,每辆A牌轿车的售价将会提高a万元(0<a<1.2),且所有两种轿车全部售出,哪种经销方案获利最大?(注:利润=售价-成本) |
22. 难度:中等 | |
如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F. (1)求证:BF=FD; (2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数. |
23. 难度:中等 | |
如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时OA′、B′C′分别与直线BC相交于P、Q. (1)四边形OA′B′C′的形状是______,当α=90°时,的值是______; (2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值; ②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积; (3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由. |