1. 难度:中等 | |
2010年上海世博会即将举行,据有关方面统计,到时总共参与人数将达到4640万人次,其中4640万用科学记数法可表示为( ) A.0.464×109 B.4.64×108 C.4.64×107 D.46.4×106 |
2. 难度:中等 | |
下列运算中,正确的个数有( ) ①x2+x3=2x5 ②(a2)3=a6 ③3×2=1 ④a3•a4=a12 ⑤. A.1个 B.2个 C.3个 D.4个 |
3. 难度:中等 | |
长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是( ) A.12cm2 B.8cm2 C.6cm2 D.4cm2 |
4. 难度:中等 | |
如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是( ) A.②④ B.①④ C.②③ D.①③ |
5. 难度:中等 | |
在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为( ) A.12.36cm B.13.6cm C.32.36cm D.7.64cm |
6. 难度:中等 | |||||||||||||||
已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是( )
A.抛物线开口向上 B.抛物线与y轴交于负半轴 C.当x=4时,y>0 D.方程ax2+bx+c=0的正根在3与4之间 |
7. 难度:中等 | |
将一块弧长为π的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为( ) A. B. C. D. |
8. 难度:中等 | |
若分解因式x2-2x-15=(x+3)(x+n),则n的值为( ) A.-5 B.5 C.-2 D.2 |
9. 难度:中等 | |
设a,b是方程x2+x-2011=0的两个实数根,则a2+2a+b的值为( ) A.2009 B.2010 C.2011 D.2012 |
10. 难度:中等 | |
将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2-3x+2的图象,则a的值为( ) A.1 B.2 C.3 D.4 |
11. 难度:中等 | |
的平方根为 . |
12. 难度:中等 | |
关于x的不等式组的解集是x>-1,则m= . |
13. 难度:中等 | |
如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k= . |
14. 难度:中等 | |
矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3,AE=,则BD= . |
15. 难度:中等 | |
如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65度.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器 台. |
16. 难度:中等 | |
如图,⊙A、⊙B的圆心A、B在直线l上,两圆半径都为1cm,开始时圆心距AB=4cm,现⊙A、⊙B同时沿直线l以每秒2cm的速度相向移动,则当两圆相切时,⊙A运动的时间为 秒. |
17. 难度:中等 | |
如图,直线y=-x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是 . |
18. 难度:中等 | |
如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是 . |
19. 难度:中等 | |
(1)计算:; (2)先化简,再求值.,其中,. |
20. 难度:中等 | |
如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形. |
21. 难度:中等 | |
某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分-100分;B级:75分-89分;C级:60分-74分;D级:60分以下) (1)求出D级学生的人数占全班总人数的百分比; (2)求出扇形统计图中C级所在的扇形圆心角的度数; (3)该班学生体育测试成绩的中位数落在哪个等级内; (4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人? |
22. 难度:中等 | |
如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F, (1)求证:BD=BF; (2)当BC=3,AD=2时,求⊙O的面积; (3)在(2)的条件下,判断△DBF是否为正三角形?并说明你的理由. |
23. 难度:中等 | |
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元. (1)该顾客至少可得到______元购物券,至多可得到______元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. |
24. 难度:中等 | |
某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上探测点A、B相距4m,探测线与地面的夹角分别是30°和60°,试确定生命所在点C的深度(结果精确到0.1m,参考数据:≈1.414,≈1.732) |
25. 难度:中等 | |
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件. (1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x元,商场一天可获利润y元. ①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元? ②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元. |
26. 难度:中等 | |
如图,已知抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC. (1)求该抛物线的解析式; (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形? (3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. |